

LWIR Band Radiometric Performance (Atmosphere Group) Chris Moeller University of Wisconsin

with the usual outstanding support from MCST

Presented at MCST Calibration Subgroup Mtg Nov. 1, 2006

Outline

- ER-2 aircraft-based assessment of MODIS LWIR band calibration accuracy
- Other assessments of MODIS LWIR calibration accuracy
- Review possible contributions to MODIS radiometric error in LWIR bands
- Summary

MODIS Emissive Band Cal/Val from the NASA ER-2 Platform

1. Collect MODIS and ER-2 co-incident data

2. Transfer SHIS calibration to MAS

3. Co-locate MODIS FOV on MAS

MODIS TIR Band Accuracy Assessment

3 Conclusions about MODIS LWIR Calibration Accuracy

- 1. MODIS LWIR window bands 31,32 are consistently performing within specification over the lifetime of the missions.
- 2. MODIS LWIR CO2 bands, esp. bands 35, 36 are consistently performing out-of-specification.
- 3. The residuals for Terra MODIS CO2 bands are larger (further from specification) than those of Aqua MODIS.

WHY????

Summary of MODIS Comparisons (Uncertainties)

Band	31	32	33	34	35	36
ER-2 avg (T)	-0.17	-0.12	-0.37	0.93	1.74	1.77
	(0.13)	(0.13)	(0.15)	(0.18)	(0.30)	(0.37)
Lake Titicaca (T)	0.12	-0.19	0.55			
	(0.28)	(0.28)	(0.77)			
Lake Tahoe (T)	-0.02	-0.10				
	(0.3)	(0.3)				
ER-2 avg (A)	-0.12	-0.07	-0.68	0.68	1.00	0.91
	(0.13)	(0.13)	(15)	(0.18)	(0.30)	(0.37)
AIRS (A)	-0.03	-0.10	-0.07	0.34	0.57	0.88
	(0.02)	(0.03)	(0.11)	(0.02)	(0.05)	(0.06)
Terra – Aqua	0.13	0.19				

(T) – Terra; (A) - Aqua

Some Possible Contributors to MODIS Calibration Bias

- 1. On-orbit Calibration Coefficients
- 2. Spectral Characterization
- 3. Optical Cross-talk (Terra only)
- 4. Out-of-band Filter Leaks
- 5. Scan mirror reflectivity (RVS)

Other systematic influences include:

- •Scan mirror temperature
- •BB emissivity and temperature
- •Scan cavity emissivity and temperature
- These are expected to be small influences (<0.1 K).

$$L_{EV} = \frac{I}{RVS_{EV}} \left(a_0 + b_1 \cdot dn_{EV} + a_2 \cdot dn_{EV}^2 - \left(RVS_{SV} - RVS_{EV} \right) \cdot L_{SM} \right)$$

E: Emissivity

L: Spectral band averaged radiance

dn: Digital count with background corrected

Calibration coefficient, b1, from BB $b_{I} = \left(RVS_{BB} \cdot \varepsilon_{BB} \cdot L_{BB} + \left(RVS_{SV} - RVS_{BB}\right) \cdot L_{SM} + RVS_{BB} \cdot \left(1 - \varepsilon_{BB}\right) \cdot \varepsilon_{cav} \cdot L_{cav} - a_{0} - a_{2} \cdot dn_{BB}^{2}\right) / dn_{BB}$

Slide courtesy of MCST

Pre-Launch RSR Uncertainty Analysis

Band Number	Wavelength (nm)	Measurement Error ¹	SpMA Absolute Wavelength Error ²	Temperature Shift on Wavelength Uncertainty ³	RSS 1-Sigma Wavelength Uncertainty (%)	RSS 1-Sigma Wavelength Uncertainty (nm)	Tobin et al spectral shift to match MODIS and AIRS (nm)
31	11016.4	.043%	.025%	.023%	.055%	6.1 nm	
32	12030.2	.010%	.025%	.015%	.031%	3.7 nm	
33	13363.1	.006%	.025%	.015%	.030%	4.0 nm	
34	13681.5	.009%	.025%	.015%	.031%	4.2 nm	-15.0 nm
35	13912.7	.005%	.025%	.015%	.030%	4.2 nm	-15.5 nm
36	14196.5	.019%	.025%	.015%	.035%	5.0 nm	-20.2 nm

 1 – based on variation in the five spot filter measurements

 2 – based on comparison with forward model CO₂ absorption feature at 13880 nm.

 3 – assumed to be $\frac{1}{2}$ of correction amount

3. PC Band Optical Cross Talk (Terra only)

LWIR focal plane

PC Bands (32-36) 11µ*m* Optical Leak

> Leak from Band 31 (11µm) filter into Bands 32-36
substrate and strikes the PC detectors from within.
> Cross-talk signals observed from pre-launch testing and on-orbit Moon observation.

Moon Observation of Bands 31 and 33 on day 2000084

Slide courtesy of MCST

PFM in-band shown with FM1 out-of-band response and Estimation of PC optical Crosstalk from B31

Terra MODIS Optical Leak Correction Day 06194, 1615 UTC

Doubling the PC_XT correction causes Baja California to show up as a cold feature in Terra MODIS Band 36 data. This is a-physical!

4. Out-of-Band Filter Leaks

Aqua MODIS Merged IB + OOB RSR

- PC07I and PC07D measurements merged using two different techniques:
 - 1. In band peak (Method "1")
 - 2. SpMA spectrum peak (Method "2")
- Data only for center channel of each band
- Merged by Steve Broberg at SBRS

Problem: The noise floor of this data is too high to gain useful knowledge about OOB influence on MODIS PC LWIR bands.

5. Scan Mirror Reflectivity (RVS)

• The calibration equation includes RVS terms:

$$L_{EV} = \frac{1}{RVS_{EV}} \left(a_0 + b_1 \cdot dn_{EV} + a_2 \cdot dn_{EV}^2 - \left(RVS_{SV} - RVS_{EV} \right) \cdot L_{SM} \right)$$

• Uncertainty based on variation of RVS for 10 detectors of each band:

– Band 34:	.0058	(<0.10 K)
– Band 35:	.0046	(<0.10 K)
– Band 36:	.0054	(<0.15 K)

• **Caveat!** On-orbit evaluations, including DSM, have significantly changed and improved upon the Terra MODIS pre-launch RVS characterization.

Band	33	34	35	36
Cal Coefficients	0.1	0.1	0.2	0.2
Spectral Response	0.2	0.2	0.2	0.3
Cross talk (Terra)	0.2	0.3	0.4	0.5
Filter Leaks (OOB)	?	?	?	?
Scan Mirror RVS	0.1	0.1	0.1	0.2
Additive Bias (Terra)	+/-0.6	+/-0.7	+/-0.9	+/-1.2
ER-2 Terra Bias	-0.37	0.93	1.74	1.77
Additive Bias (Aqua)	+/-0.4	+/-0.4	+/-0.5	+/-0.7
ER-2 Aqua Bias	-0.68	0.68	1.00	0.91

Summary (1/2)

- Both Terra and Aqua MODIS 11 and 12 um window bands are shown by a number of independent approaches to be performing excellently over the lifetime of the mission
- ER-2 based comparisons indicate that Terra MODIS LWIR atmospheric bands 34-36 are performing outof-specification with biases > 1 K.
- ER-2 based and AIRS based comparisons indicate that Aqua MODIS LWIR atmospheric bands 34-36 are performing out-of-specification with biases approaching 1 K.

Summary (2/2)

- Possible contributors to MODIS calibration bias:
 - Calibration coefficient error is deemed small (<0.2 K) based on comparisons to pre-launch calibration
 - A spectral shift estimate based on matching Aqua MODIS and AIRS radiances is significantly larger than the prelaunch spectral uncertainty for these bands.
 - Based on image analysis, it doesn't appear that the Terra MODIS 11 um optical cross talk correction can be increased significantly to explain the large Terra bias.
 - Scan mirror uncertainty is small, but history has shown that characterization changes can exceed the uncertainty.
 - OOB influence from spectral filter leaks is essentially untested due to poor quality pre-launch test data.