MODIS Land Bands for Ocean Remote Sensing: Application to Chesapeake Bay

SA Ocean Biology Processing Group

MODIS Science Team Meeting, October 2006, College Park, MD

Contents

- Why the land/cloud bands?
- Implementation & Sensor Characterization
- Results for Chesapeake Bay
- Future Plans

Some History

Gao, B.-C., M.J. Montes, Z. Ahmad, and C. O. Davis (2000). Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space, *Applied Optics*, 39, 887-896.

Arnone, R.A, Z.P. Lee, P. Martinolich, B. Casey, and S.D. Ladner (2002). Characterizing the optical properties of coastal waters by coupling 1 km and 250 m channels on MODIS – Terra, *Proc. Ocean Optics XVI*, Santa Fe, New Mexico, 18-22 November.

Li, R.-R., Y.J. Kaufman, B.-C. Gao, and C.O. Davis (2003). Remote Sensing of Suspended Sediments and Shallow Coastal Waters, *IEEE Trans. on Geoscience and Remote Sensing*, Vol. 41, No. 3 pp. 559.

Miller, R.L. and B.A. McKee (2004). Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters, *Remote Sensing of Environment*, 93, 259-266.

Hu, C., Z. Chen, T.D. Clayton, P. Swarzenski, J.C. Brock, and F.E. Müller-Karger (2004). Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL, *Remote Sensing of Environment*, 93, 423-441.

Kahru, M., B.G. Mitchell, A. Diaz, M. Miura (2004). MODIS Detects Devastating Algal Bloom in Paracas Bay, Peru, *EOS Trans. AGU*, 85 (45), 465-472.

Wang, M. and W. Shi (2005). Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies, Geophys. Res. Lett., 32, L13606.

MODIS Land/Cloud Bands of Interest

Band	Wavelength	Resolution	Potential Use
1	645 nm	250 m	sediments, turbidity, IOPs
2	859	250	aerosols
3	469	500	C_a , IOPs, CaCO ₃
4	555	500	C_a , IOPs, CaCO ₃
5	1240	500	aerosols
6	1640	500	aerosols
7	2130	500	aerosols

Expanded MODIS Ocean Band Suite

Band	Wavelength	Band	Spatial	SNR at	L _{typ}	L _{max}	
Number	(nm)	Width	Resolution	L_{typ}	$mW cm^{-2}$	$mW cm^{-2}$	
		(nm)	(m)		$\mu m^{-1} sr^{-1}$	$\mu m^{-1} sr^{-1}$	
8	412	15	1000	1773	7.84	26.9	
9	443	10	1000	2253	6.99	19.0	
3	469	20	500	556	6.52	59.1	
10	488	10	1000	2270	5.38	14.0	
11	531	10	1000	2183	3.87	11.1	
12	551	10	1000	2200	3.50	8.8	
4	555	20	500	349	3.28	53.2	
1	645	50	250	140	1.65	51.2	
13	667	10	1000	1962	1.47	4.2	
14	678	10	1000	2175	1.38	4.2	
15	748	10	1000	1371	0.889	3.5	
2	859	35	250	103	0.481	24.0	
16	869	15	1000	1112	0.460	2.5	
5	1240	20	500	25	0.089	12.3	
6	1640	35	500	19	0.028	4.9	
7	2130	50	500	12	0.008	1.7	

Characterization & Calibration

- Relative spectral response functions: Rayleigh & aerosol tables
- Polarization sensitivities (reanalysis of pre-launch testing)

Polarization Sensitivity

Meister, G., E.J. Kwiatkowska, and C.R. McClain (2006). Analysis of image striping due to polarization correction artifacts in remotely sensed ocean scenes. *Proc. SPIE Earth Observing Systems XI*, 6296.

Characterization & Calibration

- Relative spectral response functions: Rayleigh & aerosol tables
- Polarization sensitivities (reanalysis of pre-launch testing)
- Relative detector and sub-sampling corrections (striping)

Detector and Sub-sample Striping

Characterization & Calibration

- Relative spectral response functions: Rayleigh & aerosol tables
- Polarization sensitivities (reanalysis of pre-launch testing)
- Relative detector and sub-sampling corrections (striping)
- Vicarious calibration to MOBY (preliminary)

Multi-Resolution Implementation

Aggregation

QKM	HKM		1KM	
645 nm	469 nm		412 nm	
859 nm	555 nm		443 nm	
	645 nm	1	469 nm	3
	859 nm	1	488 nm	
	1240 nm		531 nm	
	1640 nm		551 nm	
	2130 nm		555 nm	3
			645 nm	2
			667 nm	
			678 nm	
			748 nm	
			859 nm	2
			869 nm	
			1240 nm	3
			1640 nm	3
			2130 nm	3
			3.9 um	
			4.0 um	
			11 um	
			12 um	

Interpolation

Observed (TOA) radiances, geolocation, radiant path geometries interpolated or aggregated to a com mon resolution at start.

Chlorophyll: 1000-meter resolution

51) OC2 = f(469,555)

OC3 = f(443, 488, 551)

Chlorophyll: 1000 & 500-meter

OC2 = f(469, 555)

OC3 = f(443, 488, 551)

0.4 mg m⁻³ 100

RGB Image: 250-meter Resolution

RGB Image: 250-meter Resolution

nLw(645): 250-meter resolution

-0.1	mW cm ⁻² μm ⁻¹ sr ⁻¹	3.0

In Situ Chlorophyll Data ~ 20 year record

SIMBIOS/Harding 3,000 stations

CBP 15,000 stations

(fluorometrically derived)

Spatial Stratification

from Magnuson et al. 2004

SWIR NIR

100.0

Satellite vs In Situ

Median Percent Difference from In Situ Chlorophyll

Region	Method	All	Spring	Summer	Fall	Winter
Upper	NIR	115.3	141.5	104.7	185.8	151.2
	SWIR	13.3	25.2	20.5	48.6	35.8
Middle	NIR	94.9	87.7	122.2	113.9	148.4
	SWIR	15.1	-5.6	19.9	31.3	62.2
Lower	NIR	71.1	110.8	71.4	43.2	123.0
	SWIR	16.9	4.0	-4.6	13.5	72.0

SWIR-based aerosol determination significantly reduces bias in C_a retrievals relative to historical record for all seasons.

Best improvement in Spring-Summer, where aerosol optical thickness (SWIR signal) is highest.

Match-up with AERONET

AOT Comparison

Development of regional aerosol models See poster by E. Kwiatkowska

New AERONET CIMEL Site on Smith Island

Correction for NO₂ Absorption

MODIS/Aqua RGB

OMI/Aura Tropospheric NO₂

See poster by Z. Ahmad

Summary

- Developed processing capabilities to include higher resolution land/cloud bands in ocean remote sensing applications.
- Demonstrated some potential ocean products (500-meter chlorophyll, 250-meter nLw), and SWIR atmospheric correction.
- SWIR-based aerosol determination significantly reduced bias between retrieved and *in situ* chlorophyll.
- Software and tools distributed through SeaDAS, to encourage further evaluation and development by research community.
- More info: http://oceancolor.gsfc.nasa.gov/DOCS/modis_hires/

Future Plans

- Develop more applicable aerosol models based on local AERONET observations
- Incorporate MODIS-derived water-vapor concentrations for improved water-vapor correction (significant in SWIR)
- Assist NOAA Coast Watch to implement an operational Chesapeake Bay monitoring system using MODIS
- Develop "high-resolution" Level-3 products (binned/mapped)
 - Rolling 3-day, merged sensors for increased coverage
 - Pilot project in Great Barrier Reef, University of Queensland

Expanded MODIS Ocean Band Suite

Band	Wavelength	Band	Spatial	
Number	(nm)	Width	Resolution	
		(nm)	(m)	
8	412	15	1000	
9	443	10	1000	
3	469	20	500	
10	488	10	1000	I Contraction of the second
11	531	10	1000	I Contraction of the second
12	551	10	1000	
4	555	20	500	
1	645	50	250	
13	667	10	1000	I Contraction of the second
14	678	10	1000	
15	748	10	1000	I Contraction of the second
2	859	35	250	
16	869	15	1000	1
5	1240	20	500	
6	1640	35	500	
7	2130	50	500	

Expanded MODIS Ocean Band Suite

Band	Wavelength	Band	Spatial	L _{max}
Number	(nm)	Width	Resolution	$mW cm^{-2}$
		(nm)	(m)	$\mu m^{-1} sr^{-1}$
8	412	15	1000	26.9
9	443	10	1000	19.0
3	469	20	500	59.1
10	488	10	1000	14.0
11	531	10	1000	11.1
12	551	10	1000	8.8
4	555	20	500	53.2
1	645	50	250	51.2
13	667	10	1000	4.2
14	678	10	1000	4.2
15	748	10	1000	3.5
2	859	35	250	24.0
16	869	15	1000	2.5
5	1240	20	500	12.3
6	1640	35	500	4.9
7	2130	50	500	1.7

Chlorophyll: 500-meter Resolution

OC2 = f(469, 555)

OC3 = f(443, 488, 551)

Aerosols from SWIR

- Evaluate standard and alternate aerosol determination
 - 1 aerosol determined via NIR at 748 and 869 nm
 - 2 aerosol determined via SWIR at 1240 and 2130 nm
- Processed 150 MODIS/Aqua scenes over Chesapeake Bay to retrieve OC3 Chlorophyll at 1km resolution.
- Compared with historical record of in situ C_a

Monthly Mean C_a Time-Series Comparison Mid Bay

Chesapeake Bay Collaboration

- Chesapeake Bay Program (MD, VA, PA, DC, Federal EPA), University of Maryland, Old Dominion, NOAA Coast Watch, and NASA OBPG.
- CBP is an on-going program of *in situ* monitoring with a large historical data set spanning ~ 20 years.
- OBPG is assisting with use of remote sensing data to augment field campaign, and supporting operational implementation within NOAA Coast Watch.
- Utilizing local expertise and *in situ* measurements (in-water and atmospheric) to evaluate and improve performance of satellite retrievals on a regional scale (regional algorithms & atmospheric models).

Chesapeake Bay SeaWiFS Chlorophyll -a

Following the Chesapeake Bay Remote Sensing Symposium in January 2006, NASA Ocean Biology Processing Group (OBPG) evaluated the performance of currently available remote sensing chlorophyll-a algorithms for the Bay. Details of the algorithms and their performance can be found at: http://seabass.gsfc.nasa.gov/eval/cbp_eval.cgi. As a result, the OC4v5 and OC3v5 algorithms are recommended for operational daily processing of SeaWiFS data at NOAA CoastWatch East Coast Node. SeaWiFS Level 1A data are processed using SeaDAS 5.0 software at East Coast Node, and Level 2 data and mapped Chl-a images are produced. Please note that Level 2 data are password protected, and questions regarding data access should be directed to Kent Hughes, CoastWatch Program Manager.

Home

About Software

Contact

NOAA is an agency within the Department of Commerce (DOC). <u>Privacy Policy | Contact Us</u>

