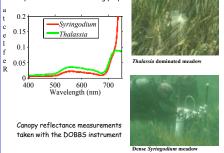
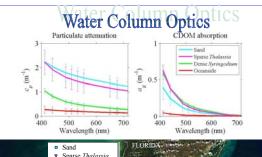


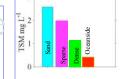
Benthic Ecology from Space Remote Sensing of Seagrass Productivity

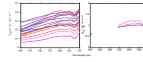

Heidi M. Dierssen¹, Victoria Hill², and Richard C. Zimmerman², ¹University of Connecticut, Department of Marine Science, Groton, CT, Email: <u>heidi.dierssen@uconn.edu</u> ²Old Dominion University, Department Ocean Earth, Atmospheric Science, Norfolk, VA


Abstract

- Seagrasses are prevalent in coastal waters throughout the world. The role that seagrass meadows play in global biogeochemical cycles is largely unquartified. Our objective is to develop, test, and validate new algorithms for using remotely sensed ocean color to quantify seagrass productivity. We have conducted extensive field investigations in a variety of different seagrass beds:
- 1. Bahamas Banks, March 2004
- 2. Florida Bay, June 2005, 2006
- 3. Port St. Joe, FL, June, October 2006
- 4. Monterey Bay, CA Sept. 2006
- Our field efforts include quantification of seagrass biomass and productivity and coincident measurements of the optical properties of the seagrass, sediment, water column, and sea surface reflectance. We have collected an extensive spectral library of sediment and seagrass reflectance. The bottom reflectance and water column optical properties are being incorporated into algorithms for remotely quantifying seagrass biomass and productivity from remote sensing reflectance.

Seagrass Reflectance


The reflectance spectra from seagrass canopies in Florida Bay show variable spectral signatures which are dependant on the mixture of seagrass species present. Differences are related to the pigments and morphology of the seagrass blades. Canopy reflectance from a dense Syringadium meadow is greater in the red compared to a Thalassia dominated area. This "red edge" may be exploited for remote sensing purpose



MODIS 2005327 true color image

Seagrasses are known to buffer currents and decrease water column turbidity. Our optical data show lower light attenuation due to particulates and lower Total Suspended Matter (TSM) in regions with dense seagrass compared to areas with sparse seagrass and sand bottoms. Seagrass, like terrestrial vegetation, also produce Colored Dissolved Organic Matter (CDOM), which is higher over areas with seagrass.

Sediment Reflectance

coastal waters. Sediment reflectance (R_{θ}) is highly variable with changing amounts of organic matter. From the Bahamas Banks, the dip in R_{θ} at 676 nm due to pigment absorption is less pronounced in sandy regions (blue spectra) than in seagrass beds (red spectra). Grapestone sediments (magenta) have the most pigment and appear similar to a green vegetated seafloor.

We have compiled an extensive database

of sediment reflectance spectra from

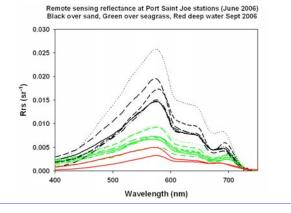
Quantifying Seagrass ass

Most approaches for remote sensing of seagrasses are qualitative in nature and cannot be incorporated into global biogeochemical models. Our quantitative measurements of seagrass biomass and productivity indicate that net primary production (NPP) can be estimated from seagrass LAI or Standing crop.

Thalassia testudinum (turtlegrass) NPP = 50.5 x Standing Crop 12 $R^2 = 0.7195$ P<0.001 ά 10 Έ 8 gDW 6 4 0.10 0.15 0.20 0.00 0.05 Standing Crop (Kg m⁻²) Tagging plants to estimate seagrass leaf

Funding provided by:

INATIONAL AERONAUTICS


and National Science Foundation

Office of Naval Res

Remote Sensing Reflectance

Measurements of seafloor reflectance and water column optical properties are incorporated into radiative transfer models to estimate remote sensing reflectance spectra (R_{rs}) over regions with different bathymetry and bottom types.

growth rates

