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The Algorithm

The contemporary remote sensing from whisk-broom (MODIS-like) sensors is pixel-based 
and uses a single-orbit data. In this case, the problem of retrieving atmospheric aerosol and 
surface reflectance parameters is under-defined (single measurement vs two unknowns) and 
cannot be solved without apriory assumptions (spectral regression from 2 μm channel for the 
“dark target” method [1-2]) or ancillary data (surface reflectance database for the “deep blue”
method [3]). The approximate nature of these apriory constraints and use of common 
simplifications to the radiative transfer model (Lambertian model of surface reflectance) limit  
the applicability and accuracy of retrievals.

This work introduces a new generic aerosol-surface reflectance retrieval algorithm 
applicable globally over the land surface, with the current exception of snow-covered surfaces. 
It uses latest sensor data along with the previous measurements, taking advantage of existing 
invariants of the atmosphere-surface system, such as: 1) surface reflective properties (BRF) 
change little on relatively short time intervals, and 2) globally, the scale of aerosol variation  
~50-60 km [4] (meso-scale). In other words, AOT can be assumed constant at short distances 
(~20km). Under these generic assumptions, the system of equations becomes over-defined and 
formally can be resolved. Indeed, the algorithm defines the elementary processing area as a 
block with the size of N (N~20 km) pixels. With K days in the simultaneous processing, the 
number of measurements (KN2) exceeds the number of unknown K+(3N)2 (K values of AOT, N2

pixels, and 3 is the number of free parameters of the Li-Sparse Ross-Thick [5] BRF model). To 
simplify the inversion problem, the algorithm uses BRF, initially retrieved in B7, along with an 
assumption of the spectral invariance of BRF shape between the 2μm and the red and blue 
spectral channels. This physically well-based approach reduces the number of unknown 
surface parameters to N2 values of the BRF scaling (or spectral regression) coefficient.

The two main assumptions are well controlled in the algorithm which is based on 
minimization of an objective function. The rapid surface change or proximity to the aerosol 
sources, causing high spatial variability of aerosols across the processing block, manifest 
themselves as high values of an objective function, which are easily filtered. The algorithm 
combines the block-level and the pixel-level processing, and produces AOT, Angstrom 
exponent, and surface BRF and albedo at 1 km grid resolution. 

Theoretically, the algorithm is based on a high accuracy semi-analytical formula derived 
with the Green’s function method [6-7]. This formula gives an analytical expression for the top-
of-atmosphere radiance as a function of coefficients of the linear LSRT BRF model, which in 
turn translates into a very efficient inversion algorithm. The necessary RTM functions, including 
integrals of the BRF kernels with atmospheric path radiance and Green’s function are pre-
calculated and stored in the look-up table. The algorithm is fast, and the work is underway to 
prepare it for operational applications.

Initial tests show an excellent agreement of retrievals with AERONET [8] aerosol optical 
thickness (AOT) measurements, low noise in the surface BRF and albedo after initialization 
stage, and robust physically expected behavior of the time series of surface reflectance. 
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New Covariance-Based Cloud Mask

Figure 1. Block-diagram of processing algorithm.

The LTP, QB and QP abbreviations are used to discriminate between the 
different time- and scale-dimensions of processing (LT – last tile vs Q – K-day 
queue of blocks (B) or pixels (P)).  1) The received data are gridded, split in Tiles 
(~600-1000 km) and Blocks (~20km), and placed in a Queue with previous data. 2) 
Water vapor is retrieved from the last tile at grid resolution. 3) Cloud Mask is 
generated at a block and grid resolution. 4) B7 BRF and albedo are retrieved from 
queue at grid resolution. 5) The main algorithm simultaneously retrieves AOT for K-
days and N2 values of the spectral regression coefficient bij for the Blue (B3) and 
Red (B1) bands. This algorithm assumes that the BRF shape is similar among 
bands B7, and B1, B3. 6) The AOT is retrieved in the Blue and Red bands at grid 
resolution using known surface BRF, e.g.                        . 7) The ratio of volumetric 
concentrations of coarse-to-fine aerosol fractions (“Angstrom exponent”) is 
calculated for the last tile at the block resolution. 8) Finally, surface BRF and 
albedo are retrieved at grid resolution from K-day queue for the rest of reflective 
MODIS bands. 
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AERONET Validation

Figure 2. Comparison of retrieved column water vapor with AERONET water vapor data.  

Bright  SurfacesRegular  Surfaces

At our request, initially the Goddard DAAC and presently MODAPS are producing the subsets
of MODIS L1B data for small areas (50 km) for about 160 active AERONET sites globally. We proto-
type our algorithm on these subsets. Comparing retrievals of water vapor and AOT with available 
AERONET data provides the means of validating the accuracy and robustness of our retrievals. The  
examples of validation given below use the MODIS TERRA subsets for 2003 (courtesy of N. Saleous) 

Figure 3. Comparison of retrieved AOT for the Blue band with AERONET data within ±30 min of 
TERRA overpass. The retrieved data are averaged over 20 km area. 

Our algorithm retrieves spectral regression 
coefficients  independently. This parameter 
changes geographically and seasonally as a 
function of the landcover type. An example for 
Bondville (USA) presented below shows this 
variability. The spectral regression coefficients in 
the Blue (B3) and Red (B1) MODIS TERRA 
bands are shown on the left, and a sequence of 
RGB TOA images, which visibly show the 
seasonal LC change are shown on the right.  

MODIS TERRA, DOY=177
An example of atmospheric correction for north-eastern USA. The top 
RGB image shows the TOA MODIS TERRA measurements, followed 
by the normalized BRF (SZA=45o, VZA=0o) and albedo).
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Examples of the cloud 
mask performance over 
different world regions. 
The left RGB images 
show the 16-day queue 
of MODIS TERRA top-
of-atmosphere measure-
ments. The generated 
cloud mask is shown on 
the right. The new 
algorithm does not use 
absolute thresholds, and 
is equally successful 
over the bright deserts  
(e.g. Solar Village) and 
snow (Halifax). 

CM Legend:

Blue – Clear
Green – Possibly Clear
Yellow – Possibly Cloudy
Red - Cloudy


