Assessment of the MODIS Algorithm for Retrieval of Aerosol Parameters over the Ocean

Kexin Zhang ${ }^{a}$, Wei Li ${ }^{a}$, Knut Stamnes ${ }^{a}$, Hans Eide ${ }^{a}$, Robert Spurr ${ }^{b}$, and Si-Chee Tsay ${ }^{c}$

$$
{ }^{\text {a }} \text { Light and Life Laboratory, Stevens Institute of Technology, Hoboken, New Jersey o7030, USA }
$$

${ }^{\text {RT SOLUTIONS Inc., Cambridge, MA 02138, USA }} \quad{ }^{\text {EEarth Sciences Directorate, NASA Goddard Space Flight Center, Greenbelt, MD } 20771 \text { USA }}$

SUMMARY

The MODIS aerosol algorithm over the ocean derives spectral aerosol optical depth and aerosol size parameters from satellite measured radiances at the top of atmosphere (TOA) by adding of Apparent Optical Properties (AOPs): TOA reflectance is approximated as a linear combination of reflectances resulting from a small particle mode and a large particle mode; correct only in the single scattering limit

For physically correct results: use linear combinations of the Inherent Optical Properties (IOPs) of small and large particle modes. Using these IOPs as inputs to an accurate multiple scattering radiative transfer model, and we find that:

- Reflectance errors incurred with the AOP method are as high as 30%.
- The retrieved optical depth has a relative error of up to 8%, and the retrieved bimodal fraction an absolute error of about 8%.
- Accurate radiative transfer simulations yields accurate values for both the retrieved optical depth and the bimodal fraction.

Difference between AOP and IOP Approach

We assume η_{550} and f have same values at 550 nm . f-value does not depend on wavelength. The relationship between η_{λ} and f at all wavelength will be (see Fig. 1 left panel):

$$
\eta_{\lambda}=\tau_{\lambda}^{s} / \tau_{\lambda}^{\text {tot }}=\frac{f c_{s}(\lambda)}{f c_{s}(\lambda)+(1-f) c_{l}(\lambda)}
$$

Actually, the retrieved η is η_{550}. It is clear that the η-value varies considerably with wavelenoth.

FIGURE 1: Left panel: the relationship between η and f-values at each MODIS wavelength. Right panel: TOA
reflectance difference $\rho_{\text {ours }}$ versus η for a bimodal distribution of aerosocls at 550 mm . The curves from top to bottom reflectance difference $\rho_{\text {aff }} \mathrm{f}$ versus η for a bimodal distribution of aerososls at 550 nm . The curves from top to botom correspond to 5 optical depth values from 0.0 to .

In order to evaluate MODIS aerosol retrieval algorithm, we use the accurate and self-consistent radi tive transfer model DISORT to calculate the TOA reflectance for both the AOP and the IOP approach The difference in results is defined as follows:

$$
\left.\rho_{d i f f}=\left[\frac{\rho^{A O P}\left(\tau_{a}\right)-\rho^{I O P}\left(\tau_{a}\right)}{\rho_{T O A}^{I O P}\left(\tau_{a}\right)}\right] \times 100\right)
$$

MODIS Aerosol Retrieval Algorithm (AOP approach)

Improved Aerosol Retrieval Algorithm (IOP Approach)

$$
\begin{aligned}
& \text { The TOA refectances are combined from two log-normal aerosol modeds by } \\
& \text { average of the reflectance of each individual mode for the same optical depth: }
\end{aligned}
$$

$$
\begin{gathered}
\rho_{\lambda}^{A O P}\left(\tau_{550}^{\text {tot }}\right) \approx \eta \rho_{\lambda}^{s}\left(\tau_{550}^{\text {tot }}\right)+(1-\eta) \rho_{\lambda}^{l}\left(\tau_{550}^{\text {tot }}\right) \\
\eta \equiv \eta_{550}=\frac{\tau_{550}^{s}}{\tau_{50}^{t o t}}=\frac{\tau_{550}^{s}}{\left(\tau_{550}^{s}+\tau_{550}^{l}\right)} \\
\text { small-narticle mode. } l \text { for the larco-narticlele }
\end{gathered}
$$

where s stands for the small-particle mode; l for the large-particle mode. By comparing the computed and measured reflectance for each of the combinations of one small and one
large-particle mode, we find the relative error $\left(\epsilon^{A O P}\right)$ for each channel:

$$
\epsilon_{\lambda}^{A O P}=\left[\rho_{\lambda}^{m}-\rho_{\lambda}^{A O P}\right] /\left[\rho_{\lambda}^{m}+0.01\right] .
$$

We sum over all 6 MODIS channels employed in the retrieval (0.55 , 066 , $086,1,24,1,6,213$ $\mu \mathrm{m}$) to get the total relative error. The final solution for τ tot and η_{50} is that which gives the minimum total relative error for $\epsilon \backslash$.
Weaknesses of the AOP approach

1. It is based on the single scattering assumption.
2. In Eq. (1), the same value $\eta=\eta_{550}$ is employed to combine reflectance at all wavelengths.
3. In Eq. (1), the same value $\eta=\eta_{550}$ is employed to combine reflectance
not correct - η-values are different at wavelengths other than 550 nm .
up to 8% when η close to 0.4 . For more general situation with different geometries, we found that the argest error could be up to 30%.

Retrieval Procedur

We use same retrieval procedure for both the AOP and the IOP approach, but the different look-up tables for the TOA reflectance. The retrieval steps are.

1. Use the measured reflectance at 550 nm to estimate τ_{550} for all 101 pre-set η-values and 20 small-large mode combinations.
. Use these estimated τ_{550}-values to find the best match between measured and computed (LUTs) reflectances at the other five MODIS bands: $\epsilon=\sum_{i=1}^{n}\left[\left(\rho_{i}^{m}-\rho_{i}^{L U T}\right) / \rho_{i}^{L U T}\right]^{2}$, where $n=5$ for the remaining 5 MODIS bands. The minimum ϵ corresponds to the retrieved aerosol optical depth τ_{550} η and mode combination.

Simulation Test Results

Following MODIS aerosol retrieval procedure, we use simulated data to test the aerosol retrieval ac cuaracy. 9 aerosol modes (4 fine modes and 5 coarse modes) have been used here. We have a total 40 test cases (4 different aerosol optical depths and 101 mode fractions η). Below are the retreival error Our improved algorithm gives much better accuacy than the MODIS algorithm.
For our improved algorithm 98.8% of the aerosol optical depth retrievals have relative error less than \pm 0.5% compared to only 36.6% for the MODIS algorithm (Fig. 2, left). The absolute error of η retrieval model, the correct selection is the small particle model 2 and the large particle model 5. So the correct selection of aerosol model retrieval is $97.77-99.01 \%$ for our improved algorithm and $74.01-77.97 \%$ for MODIS algorithm (see Fig. 3).

FIGUBE 2. Left. Relative error for the aerosel optical depth retrieval Rieht. Absolute error for n retieval magenta bar is for MODIS algorithm and blue bar for our improved aldorithm

FIGURE 3: Aerosol mode retrieval for small particle mode (left) and large particle mode (right). The magenta bal

REFERENCE
K. Zhang, W. Li, K. Stamnes, H. Eide, R. Spurr, S. C. Tsay, Assessm

Light mal Life taberitiong

