Search for "Adiabatic" Marine Stratus Using MODIS Cloud Products

J.A. Coakley, Jr., W.R. Tahnk, A.M. Scheutz, and C.R. Hayes

College of Oceanic and Atmospheric Sciences Oregon State University

• **Goal:** Use MODIS imagery to determine the degree to which marine stratus behave like "adiabatic" clouds.

1-km MODIS Imagery Terra 1 May 2001 1140 Z North Atlantic

0.84 µm

11 µm

50-km scale regions selected that contain only single-layered, low-level marine stratocumulus.

Optical Depth and Droplet Effective Radius for *Overcast Pixels*

1-km overcast pixels drawn from 50-km scale region containing mostly overcast pixels.

MOD06 cloud products and partly cloudy pixel retrievals agree when 1-km pixels are overcast.

Optical Depth and Droplet Effective Radius for *Partly Cloudy Pixels*

1-km partly cloudy pixels drawn from 50-km scale region containing mostly partly cloudy pixels.

MOD06 optical depths too small and droplet radii too large when 1-km pixels are partly cloud covered.

Cloud Cover

Cloud cover derived for partly cloudy pixel retrievals at 1 km and MOD06 cloud flag at 250 m and then aggregated to 1 km.

Results are for 50-km scale regions that contained only single-layered, marine stratocumulus in the north Atlantic.

Based on the partly cloudy pixel retrievals, the 50-km regions selected had more than 40% of the 1-km pixels overcast and more than 40% of the pixels partly cloudy.

Cloud cover fractions binned according to pixel-scale fractional cloud cover.

MODIS 250-km cloud mask severely overestimates the fractional cover.

Partly Cloudy Marine Stratocumulus

0.64-µm Reflectances Terra 13 May 2004 1110 UTC

Visible-IR Interpretation

$$w \propto (Z - Z_{\text{LCL}}) \propto H \quad R_e \propto (Z - Z_{\text{LCL}})^{1/3} \propto H^{1/3}$$

 $Z_{\rm LCL}$

$$\tau \approx \int_{Z_{LCL}}^{Z_{LCL}+H} dz' 2\pi R_e^2(z') n \propto H^{5/3}$$
$$d \ln R_e / d \ln \tau = 1/5$$

Adiabatic Clouds: Expected Relationships Among Cloud Properties

Optical Depth, Droplet Radius, and Cloud Altitude

Overcast 1-km Pixels

Variability of properties within 50-km scale regions containing no clouds other than a single-layer of marine stratocumulus.

Droplet radius and optical depth show no correlations with cloud-top altitudes, but droplet radius and optical depth are correlated for **OVERCAST** 1-km pixels.

Slope of Droplet Radius and Optical Depth Relationship at 2.1 µm

Overcast pixels show half the value of $d \ln R_e/d \ln \tau$ expected for "adiabatic clouds."

Partly cloudy pixels show no correlation for either the MOD06 product or the partly cloudy pixel retrievals.

Slope of Droplet Radius and Optical Depth Relationship at 3.7 µm

Retrievals of droplet radius at 3.7- μ m give d ln R_e /d ln τ closer to the expected value of 0.2 whether for partly cloudy or overcast pixels.

Remaining Mystery

Properties of marine stratocumulus within 50-km scale regions

	MOD06		Partly Cloudy Pixel Retrieval	
	Overcast Pixels	Partly Cloudy Pixels	Overcast Pixels	Partly Cloudy Pixels
Optical Depth	16.8 ± 10.0	$\textbf{7.3} \pm \textbf{6.0}$	$\textbf{17.6} \pm \textbf{10.0}$	$\textbf{10.4} \pm \textbf{8.0}$
1.6-μm Radius	12.0 ± 3.9	13.2 ± 5.6	12.1 ± 3.8	11.2 ± 4.4
2.1-μm Radius	12.2 ± 3.8	13.3 ± 5.6	12.4 ± 3.8	11.6 ± 4.6
3.7-μm Radius	12.0 ± 3.4	11.7 ± 4.1	$\textbf{12.3} \pm \textbf{4.0}$	11.2 ± 4.3

Based on diffusion lengths for photons at 1.6, 2.1, and 3.7 μ m and the growth of droplet radius with altitude within "adiabatic" clouds, droplet radii retrieved using 3.7- μ m reflectances should be larger than those retrieved using 2.1 and 1.6- μ m reflectances.

While $d \ln R_e / d \ln \tau$ greater with droplet radii retrieved using 3.7- μm reflectances for overcast pixels, those at 2.1 and 1.6 μm are equal.