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Purpose:

incorporate recent advances

Improve ice cloud bulk scattering models for various sensors to
in ice particle simulations and

in situ

microphysical measurements. For purposes of data fusion and cloud product
intercomparison, the models are derived for each instrument consistently.

EOS teams using our models include MODIS, MISR, CALIPSO, AIRS

Models also being used for a 30-year AVHRR cloud climatology (PATMOS-x), the
the upcoming GOES-R Advanced Baseline Imager, and aircraft sensors
including the Solar Spectral Flux Radiometer (SSFR), MAS, and MASTER

Preliminary models available for MODIS Collection 6 that include:
» Advances in both measurement technology and light scattering theory
» Higher particle size resolution and includes degree of linear polarization
« New ice habits (aggregate of plates and hollow bullet rosettes)
+ Order of magnitude increase in microphysical data
« In situ microphysical data for extremely cold, optically thin ice clouds
« Surface roughness (smooth, moderately roughened, or severely roughened

» New habit mixture

In situ Microphysical Data - Particle Size Distributions
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Microphysical data and ensuing bulk scanenng models incorporate

vances in measurement tect
- data from extremely cold, apucauy i ce clouds

- better characlenzauon of the number and shape of small ice particles

- more guidance on realistic habit mixtures
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Improvements to Single Scattering Properties

Properties for each habisize bin include volume, projected area, maximum dimension, single-scattering albedo, asymmetry parameter,
extinction/scattering cross sections as well as extinction efficiency.

What's new:

+ Single scattering properties are based on revised ice index of refraction (Warren and Brandt, JGR, 2008)

lew treatment of forward scattering, within the first few degrees of the scattering angle. Important because there is no longer a delta
transmission term that was present in the C5 (and earlier) models

« Efficiencies are now smooth as a function of the size parameter
discontinu

ratio of p to no longer any

in the transition between properties obtained from FDTD and \GOM models

+ New habits include hollow bullet rosettes as well as small and large aggregates of plates

+ Models will include extinction coefficient (5) as well as D, ;= f(IWC/3) per user request

 Libraries will provide full phase matrix, so we can build models for analyses of POLDER, GLORY, & CALIPSO depolarization data
+ Libraries will no longer have spectral gaps so we will be able to build hyperspectral and broadband models consistently across the
spectrum

+ Models can be builtfor smooth, moderately roughened, or severely roughened particies
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Ice Habits in Scattering Calculations

higher vertical velocits
~Broad size istrbutions
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Probe size ranges (at least, usable ranges):
20.C, ~100-1000 um
2D-P, 2006400 um
HVPS (High Volume Precipitation Speciromater), 200-5000 um
CPI (Cloud Particle Imager), 20-2000 um
FSSP, ~1-50um
VIPS (Video Ice Particle Sampler), ~10-350 um
GAPS has 2 parts, the CAS and CIP
(GAS: Gloud and Aerosol Specirometer, ~1-50 um
IP: Cloud Imaging Probe, 25-1600 um (but can extend furher)

m combination of probes (currently about 13,000 PSDs)
- mitigation of \alge ice pam:\s shattering at inlet to 2D-C (and similar) probes

Ice Particle Habit

Based on C:

of C: to In-situ D,, and IWC

Since each idealized ice paricle has a , and hen
PSD. Subsequenty,we can compare the WC and D, vallies computed with the simulated ice habits 1o those values estimated for each PSD from the techniques

developed by Heymsfield
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Ice Particle Habit Mixture Assumed for Colle

C5 guidelines for habit mixture
4 size ranges defined by maximum dimension
Fixed habit percentages in each size range

Aggregate of columns: used only in small
‘amounts because of fs high density

Plates: used only for particles of intermediate size

Use more hollow than solid columnsiplates!
rosettes

consiraint on

habit mixture,

n5

Max length < 60 um
100% roxals

60,am < Max length < 1000 sm
15% bulle roseties

35% hsagonal ptes

50% sold columns.

1000 sm < Max length < 2500 ym
45% sold columns

45% hollow columns

10% aggregates

Max length > 2500 gm

97% bulletroseies
% aggregates

Ice Particle Habit Mixture Suggested for Collection 6
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New habit mixture
Developed by Carl Schmitt at NCAR

‘Smooth transition of habit with maximum dimension
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Single scattering albedo, asymmetry parameter, and extinction coefficient
divided by the IWC (4/IWC) at a wavelength of 2.12 um for severely roughened
particles

Explore new areas

Polarization Surface Roughness
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C5 to C6 Comparison — Surface Roughness
Previous models assumed that particle surtaces are smooth, except for the

g aggrogate. Th now database wil includo both moderate and s
\ roughness. The example below is a comparison of the intensity (P.,) for

MODIS Band 1 (005 m wavelength). Addiionaly.anew reatment of forvard

Scattering is incorporated in the C6 model
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