Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Forzieri, G, Moser, G, Vivoni, ER, Castelli, F, Canovaro, F (2010). Riparian Vegetation Mapping for Hydraulic Roughness Estimation Using Very High Resolution Remote Sensing Data Fusion. JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 136(11), 855-867.

Abstract
For detailed hydraulic modeling, accurate spatial information of riparian vegetation patterns needs to be derived in automatic fashion. We propose a supervised classification for heterogeneous riparian corridors with a low number of spectrally separate classes using data fusion of a Quickbird image and LIDAR data. The approach considers nine land cover classes including three woody riparian species, brush, cultivated areas, grassland, urban infrastructures, bare soil and water. The classical stacked vector approach is adopted for data fusion, while the nonparametric weighted feature-extraction method and the pixel-oriented maximum likelihood algorithm are used for feature-reduction and classification purposes, respectively. We test the approach over a 14-km stretch of the Sieve River (Tuscany Region, Italy). A one-dimensional river modeling is applied over the study reach comparing the results of a classification-derived hydraulic roughness map and a traditional ground-based approach. Despite the complex study reach, the classification method produced encouraging accuracies (OKS=0.77) and represents a useful tool to delineate application domains of flow resistance models suited to different hydrodynamic patterns (e.g., stiff/flexible vegetation). Hydraulic modeling results showed that the remotely derived floodplain roughness parameterization captures the equivalent Manning coefficient over 20 test cross sections with uncertainty distributions described by low mean and standard deviation values.

DOI:
10.1061/(ASCE)HY.1943-7900.0000254

ISSN:
0733-9429

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page