Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Alam, K, Iqbal, MJ, Blaschke, T, Qureshi, S, Khan, G (2010). Monitoring spatio-temporal variations in aerosols and aerosol-cloud interactions over Pakistan using MODIS data. ADVANCES IN SPACE RESEARCH, 46(9), 1162-1176.

Clouds are important elements in climatic processes and interactions between aerosols and clouds are therefore a hot topic for scientific research. Aerosols show both spatial and temporal variations, which can lead to variations in the microphysics of clouds. In this research, we have examined the spatial and temporal variations in aerosol particles over Pakistan and the impact of these variations on various optical properties of clouds, using Moderate Resolution Imaging Spectroradiometer (MODIS) data from the Terra satellite. We used the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model for trajectory analysis to reveal the origins of air masses, with the aim of understanding these spatial and temporal variabilities in aerosol concentrations. We also documented seasonal variations in patterns of aerosol optical depth (AOD) over Pakistan, for which the highest values occur during the monsoon season (June August). We then analyzed the relationships between AOD and four other cloud parameters, namely water vapour (WV), cloud fraction (CF), cloud top temperature (CTT) and cloud top pressure (CTP). Regional correlation maps and time series plots for aerosol (AOD) and cloud parameters were produced to provide a better understanding of aerosol cloud interaction. The analyses showed strong positive correlations between AOD and WV for all of the eight cities investigated. The correlation between AOD and CF was positive for those cities where the air masses were predominantly humid, but negative for those cities where the air masses were relatively dry and carried a low aerosol abundance. These correlations were clearly dependent on the meteorological conditions for all of the eight cities investigated. Because of the observed AOD CF relationship, the co-variation of AOD with CTP and CTT may be attributable to large-scale meteorological variations: AOD showed a positive correlation with CTP and CTT in northern regions of Pakistan and a negative correlation in southern regions. Crown copyright (c) 2010 Published by Elsevier Ltd. on behalf of COSPAR. All rights reserved.



NASA Home Page Goddard Space Flight Center Home Page