Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Maddux, BC, Ackerman, SA, Platnick, S (2010). Viewing Geometry Dependencies in MODIS Cloud Products. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 27(9), 1519-1528.

Characterizing the earth's global cloud field is important for the proper assessment of the global radiation budget and hydrologic cycle. This characterization can only be achieved with satellite measurements. For complete daily coverage across the globe, polar-orbiting satellites must take observations over a wide range of sensor zenith angles. This paper uses Moderate Resolution Imaging Spectroradiometer (MODIS) Level-3 data to determine the effect that sensor zenith angle has on global cloud properties including the cloud fraction, cloud-top pressure, effective radii, and optical thickness. For example, the MODIS cloud amount increases from 57% to 71% between nadir and edge-of-scan (similar to 67 degrees) observations, for clouds observed between 35 degrees N and 35 degrees S latitude. These increases are due to a combination of factors, including larger pixel size and longer observation pathlength at more oblique sensor zenith angles. The differences caused by sensor zenith angle bias in cloud properties are not readily apparent in monthly mean regional or global maps because the averaging of multiple satellite overpasses together washes out'' the zenith angle artifact. Furthermore, these differences are not constant globally and are dependent on the cloud type being observed.



NASA Home Page Goddard Space Flight Center Home Page