Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Zhang, ZM, He, GJ, Wang, XQ (2010). A practical DOS model-based atmospheric correction algorithm. INTERNATIONAL JOURNAL OF REMOTE SENSING, 31(11), 2837-2852.

Abstract
Atmospheric correction is of great importance in quantitative remote sensing studies. However, many of the atmospheric correction algorithms proposed in the literature are not easily applicable in real cases. In order to develop a practical atmospheric correction algorithm, Moderate Resolution Imaging Spectroradiometer (MODIS) imagery is employed to obtain aerosol optical depth and the total atmospheric water vapour content, which are used to compute the transmittances in a dark object subtraction (DOS) model. An improved DOS atmospheric correction method combining MODIS imagery with the conventional DOS technique is proposed. A Landsat 7 Enhanced Thematic Mapper Plus (ETM+) image acquired on 21 October 2001 in Wuyi mountain, south-eastern China, and a CBERS 02 CCD image acquired on 24 August 2005 in Dunhuang, north-western China, were atmospherically corrected with this new approach. Various tests are performed, from spectral signature analysis, to vegetation index spatial profile and image information content comparisons, and by direct comparison with ground-measured reflectances, to evaluate the performance of the improved DOS model. The evaluation shows it can generally achieve a good atmospheric correction result.

DOI:
10.1080/01431160903124682

ISSN:
0143-1161

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page