Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Eckmann, TC, Still, CJ, Roberts, DA, Michaelsen, JC (2010). Variations in Subpixel Fire Properties with Season and Land Cover in Southern Africa. EARTH INTERACTIONS, 14, 6.

Abstract
Some of the most widely used datasets for monitoring the world's fires come from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors aboard NASA's Terra and Aqua satellites. For virtually all remote sensing systems, including MODIS, pixels that contain fires comprise a mix of burning and nonburning components, each with sizes and temperatures that vary between pixels. Current remote sensing products provide little information about these subpixel components, severely limiting estimates of the gas and aerosol emissions and ecological impacts from the world's fires. This study shows how multiple endmember spectral mixture analysis (MESMA) can estimate subpixel fire sizes and temperatures from MODIS and can overcome many limitations of existing methods for characterizing fire intensities from remotely sensed data, such as the fire radiative power (FRP) approach. This study used MESMA to estimate subpixel fire sizes and temperatures for MODIS scenes in southern Africa, analyzed how these sizes and temperatures varied with season and land cover, and compared these to analyses made with FRP. This study could be the first to analyze fire sizes and temperatures on a spatial scale as large as a MODIS scene and a temporal scale as large as a full fire season. The variations in MESMA estimates of fire temperature with season and land cover were more consistent than the FRP estimates. Based on these findings, MESMA appears to be more effective than FRP at capturing some variations in fire temperatures, which strongly influence the gas and aerosol emissions from fires, along with their effects on ecosystems.

DOI:
10.1175/2010EI328.1

ISSN:
1087-3562

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page