Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Mitchell, DL, d'Entremont, RP, Lawson, RP (2010). Inferring Cirrus Size Distributions through Satellite Remote Sensing and Microphysical Databases. JOURNAL OF THE ATMOSPHERIC SCIENCES, 67(4), 1106-1125.

Abstract
Since cirrus clouds have a substantial influence on the global energy balance that depends on their microphysical properties, climate models should strive to realistically characterize the cirrus ice particle size distribution (PSD), at least in a climatological sense. To date, the airborne in situ measurements of the cirrus PSD have contained large uncertainties due to errors in measuring small ice crystals (D less than or similar to 60 mu m). This paper presents a method to remotely estimate the concentration of the small ice crystals relative to the larger ones using the 11- and 12-mu m channels aboard several satellites. By understanding the underlying physics producing the emissivity difference between these channels, this emissivity difference can be used to infer the relative concentration of small ice crystals. This is facilitated by enlisting temperature-dependent characterizations of the PSD (i.e., PSD schemes) based on in situ measurements. An average cirrus emissivity relationship between 12 and 11 mu m is developed here using the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument and is used to retrieve the PSD based on six different PSD schemes. The PSDs from the measurement-based PSD schemes are compared with corresponding retrieved PSDs to evaluate differences in small ice crystal concentrations. The retrieved PSDs generally had lower concentrations of small ice particles, with total number concentration independent of temperature. In addition, the temperature dependence of the PSD effective diameter D-e and fall speed V-f for these retrieved PSD schemes exhibited less variability relative to the unmodified PSD schemes. The reduced variability in the retrieved D-e and V-f was attributed to the lower concentrations of small ice crystals in the retrieved PSD.

DOI:
10.1175/2009JAS3150.1

ISSN:
0022-4928

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page