Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Retalis, A, Hadjimitsis, DG, Michaelides, S, Tymvios, F, Chrysoulakis, N, Clayton, CRI, Themistocleous, K (2010). Comparison of aerosol optical thickness with in situ visibility data over Cyprus. NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 10(3), 421-428.

Abstract
The monitoring of aerosol concentrations comprises a high environmental priority, particularly in urban areas. Remote sensing of atmospheric aerosol optical thickness (AOT) could be used to assess particulate matter levels at the ground. However, such measurements often need further validation. In this study, aerosol data retrieved from satellite and sun-photometer, on the one hand, and visibility data at various locations in Cyprus, on the other hand, for the period from January to June 2009 are contrasted. The results obtained by the direct comparison between MODIS and handheld sun-photometer AOT data exhibited a significant correlation (r=0.83); these results are in agreement with those reported by the National Aeronautics and Space Administration (NASA). The correlation between sun-photometer AOT and that estimated from visibility measurements was also significant (r=0.76). A direct and significant relationship between MODIS AOT and AOT estimated from visibility values was also found for all the locations used (the correlation coefficient was found to vary from 0.80 to 0.84). It is concluded that MODIS AOT data provide accurate information on the aerosol content in Cyprus, while in the absence of such data, visibility measurements could be used as a secondary source of aerosol load information, in terms of aerosol optical thickness, and provide useful information on a near-real time basis, whenever data are available.

DOI:

ISSN:
1561-8633

NASA Home Page Goddard Space Flight Center Home Page