Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Tong, JJ, Dery, SJ, Chen, Y, Hu, B (2010). An alternative method for in-flight absolute radiometric calibration of thermal infrared channels of Chinese geostationary meteorological satellites. INTERNATIONAL JOURNAL OF REMOTE SENSING, 31(3), 791-803.

Abstract
The aim of this study was to explore the feasibility of an alternative method for in-flight absolute radiometric calibration of the thermal infrared (TIR) channels of the Chinese meteorological satellites FengYun-2B (FY-2B) and FengYun-2C (FY-2C). The alternative method substituted radiosonde atmospheric profiles with those from the National Centers for Environmental Prediction (NCEP) reanalysis and the water surface brightness temperatures from TIR radiometers (CE312) with those from an automated hydrometeorological buoy (AHMB) system over Qinghai Lake (QHL), China. These data were then used to calculate the calibration coefficients and their uncertainty for the TIR channels of FY-2B and FY-2C. The at-sensor radiance (ASR) and at-sensor brightness temperature (ASBT) of the TIR channels of FY-2B and FY-2C were calculated by using 14 atmospheric profiles as measured by radiosonde over QHL in August 2003 and the corresponding NCEP reanalysis data, respectively. In addition, we conducted sensitivity tests to different atmospheric profiles of varying relative humidity and air temperatures on the ASR and ASBT of the TIR channels of FY-2B and FY-2C. Differences in gains between the regular and alternative methods are less than 0.005 mW m(-2) sr(-1) cm(-1) DN-1. The sensitivity tests show that the ASR and ASBT are more sensitive to the relative humidity than the temperature in the atmospheric profile. Our results show that the proposed alternative method, of which the uncertainty is about 1.5 K for the TIR channels of FY-2B and FY-2C, is feasible for the TIR channels of various remote sensors. One of the major benefits of this alternative method is the potential for more frequent, reliable and inexpensive calibrations of the TIR sensors in operational conditions.

DOI:
10.1080/01431160902897841

ISSN:
0143-1161

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page