Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Khlopenkov, KV, Trishchenko, AP, Luo, Y (2010). Achieving Subpixel Georeferencing Accuracy in the Canadian AVHRR Processing System. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 48(4), 2150-2161.

Abstract
Precise geolocation is one of the fundamental requirements for satellite imagery to be suitable for climate applications. The Global Climate Observing System and the Committee on Earth Observing Satellites identified the requirement for the accuracy of geolocation of satellite data for climate applications as 1/3 field of view (FOV). This requirement for the series of the Advanced Very High Resolution Radiometer (AVHRR) on the National Oceanic and Atmospheric Administration platforms cannot be met without implementing the ground control point (GCP) correction, particularly for historical data, because of limited accuracy of orbit modeling and knowledge of satellite attitude angles. This paper presents a new method for precise georeferencing of the AVHRR imagery developed as part of the new Canadian AVHRR processing system (CAPS) designed for generating high-quality AVHRR satellite climate data record at 1-km spatial resolution. The method works in swath projection and uses the following: 1) the reference monthly images from Moderate Resolution Imaging Spectroradiometer at 250-m resolution; 2) orthorectification to correct for surface elevation; and 3) a novel image matching technique in swath projection to achieve the subpixel resolution. The method is designed for processing daytime data as it intensively employs observations from optical solar bands, the near-infrared channel in particular. The application of the developed processing system showed that the algorithm achieved better than 1/3 FOV geolocation accuracy for AVHRR 1-km scenes. It has very high efficiency rate (> 97%) due to the dense and uniform GCP coverage of the study area (5700 x 4800 km(2)), covering the entire Canada, the Northern U.S., Alaska, Greenland, and surrounding oceans.

DOI:
10.1109/TGRS.2009.2034974

ISSN:
0196-2892

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page