Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Solberg, R, Koren, H, Amlien, J, Malnes, E, Schuler, DV, Orthe, NK (2010). The development of new algorithms for remote sensing of snow conditions based on data from the catchment of vre Heimdalsvatn and the vicinity. HYDROBIOLOGIA, 642(1), 35-46.

Abstract
The catchment of vre Heimdalsvatn and the surrounding area was established as a site for snow remote sensing algorithm development, calibration and validation in 1997. Information on snow cover and snowmelt are important for understanding the timing and scale of many lake ecosystem processes. Field campaigns combined with data from airborne sensors and spaceborne high-resolution sensors have been used as reference data in experiments over many years. Several satellite sensors have been utilised in the development of new algorithms, including Terra MODIS and Envisat ASAR. The experiments have been motivated by operational prospects for snow hydrology, meteorology and climate monitoring by satellite-based remote sensing techniques. This has resulted in new time-series multi-sensor approaches for monitoring of snow cover area (SCA) and snow surface wetness (SSW). The idea was to analyse, on a daily basis, a time series of optical and radar satellite data in multi-sensor models. The SCA algorithm analyses each optical and synthetic aperture radar (SAR) image individually and combines them into a day product based on a set of confidence functions. The SSW algorithm combines information about the development of the snow surface temperature and the snow grain size (SGS) in a time-series analysis. The snow cover algorithm is being evaluated for application in a global climate monitoring system for snow variables. The successful development of these algorithms has led to operational applications of snow monitoring in Norway and Sweden, as well as enabling the prediction of the spring snowmelt flood and thus the initiation of many lake production processes.

DOI:
10.1007/s10750-010-0157-3

ISSN:
0018-8158

NASA Home Page Goddard Space Flight Center Home Page