Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Wang, FM, Huang, JF, Chen, L (2010). DEVELOPMENT OF A VEGETATION INDEX FOR ESTIMATION OF LEAF AREA INDEX BASED ON SIMULATION MODELING. JOURNAL OF PLANT NUTRITION, 33(3), 328-338.

Abstract
Leaf area index (LAI) is an important structural variable for quantitative analysis of the energy and mass exchange characteristics of a terrestrial ecosystem. The objective of the research was to use the Scattering by Arbitrarily Inclined Leaves (SAIL) model to develop a new vegetation index for estimating LAI based on the Ratio Vegetation Index (RVI) and Perpendicular Vegetation Index (PVI). In the study, RVIs and PVIs were derived from the SAIL-simulated reflectance, and several potential limitations of RVI and PVI in LAI estimation were identified. First, for a given LAI level, a dark soil background resulted in higher RVI values and overestimated LAI values. The reverse was true for light colored soils. On the contrary, the PVI tended to underestimate LAI for dark soil background and overestimate LAI for light soil background. The RVI behaves oppositely to PVI in LAI estimation for same soil background. Based on these results, a new vegetation index (RMPVI: RVI Multiplied by PVI Vegetation Index) was constructed, and the sensitivity of this index to LAI was then evaluated and the performance of RMPVI in LAI estimation was compared with those of other vegetation indices. The results show that the RMPVI can greatly minimize the soil background influences, and is more sensitive to LAI than other indices, especially when LAI is greater than 2. As for LAI estimation, RMPVI can yield highest R2 than other vegetation indices used in the study, with a root mean square error (RMSE) of 0.16, which shows RMVPI is an efficient index for LAI estimation.

DOI:
10.1080/01904160903470380

ISSN:
0190-4167

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page