Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

MacDonald, RJ, Byrne, JM, Kienzle, SW (2009). A Physically Based Daily Hydrometeorological Model for Complex Mountain Terrain. JOURNAL OF HYDROMETEOROLOGY, 10(6), 1430-1446.

Abstract
This paper describes the continued development of the physically based hydrometeorological model Generate Earth Systems Science input (GENESYS) and its application in simulating snowpack in the St. Mary (STM) River watershed, Montana. GENESYS is designed to operate a high spatial and temporal resolution over complex mountainous terrain. The intent of this paper is to assess the performance of the model in simulating daily snowpack and the spatial extent of snow cover over the St. Mary River watershed. A new precipitation estimation method that uses snowpack telemetry (SNOTEL) and snow survey data is presented and compared with two other methods, including Parameter-elevation Regressions on Independent Slopes Model (PRISM) precipitation data. A method for determining daily temperature lapse rates from NCEP reanalysis data is also presented and the effect of temperature lapse rate on snowpack simulations is determined. Simulated daily snowpack values compare well with observed values at the Many Glacier SNOTEL site, with varying degrees of accuracy, dependent on the method used to estimate precipitation. The spatial snow cover extent compares well with Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover products for three dates selected to represent snow accumulation and ablation periods.

DOI:
10.1175/2009JHM1093.1

ISSN:
1525-755X

NASA Home Page Goddard Space Flight Center Home Page