Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Wu, YL, Nair, US, Pielke, RA, McNider, RT, Christopher, SA, Anantharaj, VG (2009). Impact of Land Surface Heterogeneity on Mesoscale Atmospheric Dispersion. BOUNDARY-LAYER METEOROLOGY, 133(3), 367-389.

Prior numerical modelling studies show that atmospheric dispersion is sensitive to surface heterogeneities, but past studies do not consider the impact of a realistic distribution of surface heterogeneities on mesoscale atmospheric dispersion. While these focussed on dispersion in the convective boundary layer, the present work also considers dispersion in the nocturnal boundary layer and above. Using a Lagrangian particle dispersion model (LPDM) coupled to the Eulerian Regional Atmospheric Modeling System (RAMS), the impact of topographic, vegetation, and soil moisture heterogeneities on daytime and nighttime atmospheric dispersion is examined. In addition, the sensitivity to the use of Moderate Resolution Imaging Spectroradiometer (MODIS)-derived spatial distributions of vegetation characteristics on atmospheric dispersion is also studied. The impact of vegetation and terrain heterogeneities on atmospheric dispersion is strongly modulated by soil moisture, with the nature of dispersion switching from non-Gaussian to near-Gaussian behaviour for wetter soils (fraction of saturation soil moisture content exceeding 40%). For drier soil moisture conditions, vegetation heterogeneity produces differential heating and the formation of mesoscale circulation patterns that are primarily responsible for non-Gaussian dispersion patterns. Nighttime dispersion is very sensitive to topographic, vegetation, soil moisture, and soil type heterogeneity and is distinctly non-Gaussian for heterogeneous land-surface conditions. Sensitivity studies show that soil type and vegetation heterogeneities have the most dramatic impact on atmospheric dispersion. To provide more skilful dispersion calculations, we recommend the utilisation of satellite-derived vegetation characteristics coupled with data assimilation techniques that constrain soil-vegetation-atmosphere transfer (SVAT) models to generate realistic spatial distributions of surface energy fluxes.



NASA Home Page Goddard Space Flight Center Home Page