Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Pavelsky, TM, Smith, LC (2009). "Remote sensing of suspended sediment concentration, flow velocity, and lake recharge in the Peace-Athabasca Delta, Canada". WATER RESOURCES RESEARCH, 45, W11417.

Abstract
The transport of fine sediment, carried in suspension by water, is central to the hydrology, geomorphology, and ecological functioning of river floodplains and deltas. An extensive new field data set for the Peace-Athabasca Delta (PAD), Canada quantifies robust positive relationships between in situ suspended sediment concentration (SSC) and remotely sensed visible/near-infrared reflectance. These relationships are exploited using SPOT and ASTER satellite images to map suspended sediment concentrations across the PAD for four days in 2006 and 2007, revealing strong variations in water sources and flow patterns, including flow reversals in major distributaries. Near-daily monitoring with 276 MODIS satellite images tracks hydrologic recharge of floodplain lakes, as revealed by episodic infusions of sediment-rich water from the Athabasca River. The timing and magnitude of lake recharge are linked to springtime water level on the Athabasca River, suggesting a system sensitive to changes in river flow regime. Moreover, recharge timing differentiates lakes that are frequently and extensively recharged from those recharged more rarely. Finally, we present a first estimation of river flow velocity based on remotely sensed SSC, though saturation may occur at velocities > 0.6 m/s. Viewed collectively, the different remote sensing methodologies presented here suggest strong value for visible/near-infrared remote sensing of suspended sediment to assess hydrologic and sediment transport processes in complex flow environments. Field observations including nephelometric turbidity, specific conductivity, water temperature, Secchi disk depth, suspended sediment concentration, and water level are archived at the Oak Ridge National Laboratory Distributed Active Archive Center for Biogeochemical Dynamics (available at http://daac.ornl.gov//HYDROCLIMATOLOGY/guides/PAD.html).

DOI:
10.1029/2008WR007424

ISSN:
0043-1397

NASA Home Page Goddard Space Flight Center Home Page