Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Verbesselt, J, Hyndman, R, Newnham, G, Culvenor, D (2010). Detecting trend and seasonal changes in satellite image time series. REMOTE SENSING OF ENVIRONMENT, 114(1), 106-115.

Abstract
A wealth of remotely sensed image time series covering large areas is now available to the earth science community. Change detection methods are often not capable of detecting land cover changes within time series that are heavily influenced by seasonal climatic variations. Detecting change within the trend and seasonal components of time series enables the classification of different types of changes. Changes occurring in the trend component often indicate disturbances (e.g. fires, insect attacks), while changes occurring in the seasonal component indicate phenological changes (e.g. change in land cover type). A generic change detection approach is proposed for time series by detecting and characterizing Breaks For Additive Seasonal and Trend (BFAST). BFAST integrates the decomposition of time series into trend, seasonal, and remainder components with methods for detecting change within time series. BFAST iteratively estimates the time and number of changes, and characterizes change by its magnitude and direction. We tested BFAST by simulating 16-day Normalized Difference Vegetation Index (NDVI) time series with varying amounts of seasonality and noise, and by adding abrupt changes at different times and magnitudes. This revealed that BFAST can robustly detect change with different magnitudes (> 0.1 NDVI) within time series with different noise levels (0.01-0.07 sigma) and seasonal amplitudes (0.1-0.5 NDVI). Additionally, BFAST was applied to 16-day NDVI Moderate Resolution Imaging Spectroradiometer (MODIS) composites for a forested study area in south eastern Australia. This showed that BFAST is able to detect and characterize spatial and temporal changes in a forested landscape. BFAST is not specific to a particular data type and can be applied to time series without the need to normalize for land cover types, select a reference period, or change trajectory. The method can be integrated within monitoring frameworks and used as an alarm system to flag when and where changes occur. Crown Copyright (C) 2009 Published by Elsevier Inc. All rights reserved.

DOI:
10.1016/j.rse.2009.08.014

ISSN:
0034-4257

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page