Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Czapla-Myers, JS, Thome, KJ, Biggar, SF (2009). Calibration and characterization of a digital camera for bidirectional reflectance distribution function retrieval of vicarious calibration sites. JOURNAL OF APPLIED REMOTE SENSING, 3, 33519.

Abstract
This work describes the calibration and characterization of a commercial digital camera that is being evaluated as a potential inexpensive imaging system to measure the bidirectional reflectance factor of the test site surfaces that are used by the Remote Sensing Group for the ground-based vicarious calibration of airborne and spaceborne systems. The main advantage to using a lightweight digital camera in combination with a fisheye lens is that a test site can be simultaneously spatially and spectrally sampled with greater ease. The motivation for using an inexpensive, lightweight digital camera to measure surface bidirectional distribution factor is the ability to spatially sample many points on the ground. An additional benefit to such cameras is their ability to operate without the need for cooling, which was required on a previous camera system developed at the Remote Sensing Group. Laboratory measurements include the gain and offset, spectral responsivity, linearity, cosine response, and point spread function. The results show that the uniformity of the Nikon detector array ranges from 0.7%-1.2%. The spectral bandwidth is approximately 90 nm for the blue channel, and 110 nm for the green, and 75 nm for the red channel. Linearity measurements show that the camera responsivity is nonlinear due to the internal image-processing algorithms, and a logarithmic fitting function is suggested. Measurements of the camera response versus the angle of incidence reveal that the camera does not exhibit a cos(4) falloff on detector irradiance as one would expect, which is another consequence of the internal algorithms.

DOI:
10.1117/1.3116662

ISSN:
1931-3195

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page