Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Stern, AJ, Doraiswamy, PC, Akhmedov, B (2009). Techniques for developing land-use classification using moderate resolution imaging spectroradiometer imagery. JOURNAL OF APPLIED REMOTE SENSING, 3, 33517.

Using NOAA AVHRR or MODIS imagery to create land-use classifications has been attempted for many years. Unfortunately, most of these classifications do not differentiate crop types. Crop models require that vegetation characteristics extracted from an image be the correct crop type. This study compares four techniques to create land-use classifications using MODIS data. These classifications were compared to the ground data that had been set aside, to a mask where each MODIS sized pixel were at least 80% of a single land-used based on a Landsat TM classification for the same year, and to the Landsat TM classification. Using a decision tree method and comparing the classification to an 80% mask resulted in an accuracy of 73% which was the highest accuracy obtained in this study. The study showed that accuracies could range from 37% to 73% depending on the classification process and if segment data, an 80% mask, or a Landsat TM classification were used for accuracy assessment.



NASA Home Page Goddard Space Flight Center Home Page