Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Toomey, M, Roberts, D, Nelson, B (2009). The influence of epiphylls on remote sensing of humid forests. REMOTE SENSING OF ENVIRONMENT, 113(8), 1787-1798.

Abstract
Epiphylls - lichens, fungi, liverworts, etc. infesting leaf surfaces - are found throughout humid forests of the world. It is well understood that epiphylls inhibit light interception by host plants, but their effect on remote sensing of colonized forests has not been examined. Incorporating leaf-level spectra from Terra Firme (primary forest) and Amazonian Caatinga (woodlands/forest growing on nutrient-deficient sandy soils), we used the GeoSAIL model to propagate leaf-level measurements to the canopy level and determine their effect on commonly used vegetation indices. In Caatinga, moderate infestations (50% leaf area epiphyll cover), lowered simulated Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) values by 6.1% and 20.4%, respectively, largely due to near infrared dampening. Heavy infestation (100% cover) simulations exhibited decreases 1.5-2 times greater than those of moderate infestations. For Terra Firme, which are generally less affected by epiphylls, moderate (20% leaf area) and heavy infestations (40%) lowered EVI by 4.4% (S.D. 0.8%) and 8.1% (S.D. 1.5%), respectively. Near infrared and green reflectance were most affected at the canopy level, showing mean decreases of 10.6% (S.D. 2.25%) and 9.5% (S.D. 3.49%), respectively, in heavy Terra Firme infestations. Time series of Moderate Resolution Imaging Spectrometer (MODIS) data corroborated the modeling results, suggesting a degree of coupling between epiphyll cover and the EVI and NDVI. These results suggest that, without explicit consideration of the presence of epiphylls, remote sensing-based methodologies may underestimate leaf area index, biomass and productivity in humid forests. (C) 2009 Elsevier Inc. All rights reserved.

DOI:
10.1016/j.rse.2009.04.002

ISSN:
0034-4257

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page