Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Vazifedoust, M, van Dam, JC, Bastiaanssen, WGM, Feddes, RA (2009). Assimilation of satellite data into agrohydrological models to improve crop yield forecasts. INTERNATIONAL JOURNAL OF REMOTE SENSING, 30(10), 2523-2545.

Abstract
This paper addresses the question of whether data assimilation of remotely sensed leaf area index and/or relative evapotranspiration estimates can be used to forecast total wheat production as an indicator of agricultural drought. A series of low to moderate resolution MODIS satellite data of the Borkhar district, Isfahan (Iran) was converted into both leaf area index and relative evapotranspiration using a land surface energy algorithm for the year 2005. An agrohydrological model was then implemented in a distributed manner using spatial information of soil types, land use, groundwater and irrigation on a raster basis with a grid size of 250m, i.e. moderate resolution. A constant gain Kalman filter data assimilation algorithm was used for each data series to correct the internal variables of the distributed model whenever remotely sensed data were available. Predictions for 1 month in advance using simulations with assimilation at a regional scale were very promising with respect to the statistical data (bias=+/- 10%). However, longer-term predictions, i.e. 2 months in advance, resulted in a higher bias between the simulated and statistical data. The introduced methodology can be used as a reliable tool for assessing the impacts of droughts in semi-arid regions.

DOI:
10.1080/01431160802552769

ISSN:
0143-1161

NASA Home Page Goddard Space Flight Center Home Page