Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Feltz, WF, Bedka, KM, Otkin, JA, Greenwald, T, Ackerman, SA (2009). Understanding Satellite-Observed Mountain-Wave Signatures Using High-Resolution Numerical Model Data. WEATHER AND FORECASTING, 24(1), 76-86.

Prior work has shown that pilot reports of severe turbulence over Colorado often occur when complex interference or crossing wave patterns are present in satellite water vapor imagery downstream of the Rocky Mountains. To improve the understanding of these patterns, a high-resolution (1-km) Weather Research and Forecasting (WRF) model simulation was performed for an intense mountain-wave event that occurred on 6 March 2004. Synthetic satellite imagery was subsequently generated by passing the model-simulated data through a forward radiative transfer model. Comparison with concurrent Moderate Resolution Imaging Spectroradiometer (MODIS) water vapor imagery demonstrates that the synthetic satellite data realistically captured many of the observed mesoscale features, including a mountain-wave train extending far downstream of the Colorado Front Range, the deformation of this wave train by an approaching cold front, and the substantially warmer brightness temperatures in the lee of the major mountain ranges composing the Colorado Rockies. Inspection of the model data revealed that the mountain waves redistributed the water vapor within the lower and middle troposphere, with the maximum column-integrated water vapor content occurring one-quarter wavelength downstream of the maximum ascent within each mountain wave. Due to this phase shift, the strongest vertical motions occur halfway between the locally warm and cool brightness temperature couplets in the water vapor imagery. Interference patterns seen in the water vapor imagery appear to be associated with mesoscale variability in the ambient wind field at or near mountaintop due to flow interaction with the complex topography. It is also demonstrated that the synergistic use of multiple water vapor channels provides a more thorough depiction of the vertical extent of the mountain waves since the weighting function for each channel peaks at a different height in the atmosphere.



NASA Home Page Goddard Space Flight Center Home Page