Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Nagler, PL, Morino, K, Didan, K, Erker, J, Osterberg, J, Hultine, KR, Glenn, EP (2009). Wide-area estimates of saltcedar (Tamarix spp.) evapotranspiration on the lower Colorado River measured by heat balance and remote sensing methods. ECOHYDROLOGY, 2(1), 18-33.

Abstract
In many places along the lower Colorado River, saltcedar (Tamarix spp) has replaced the native shrubs and trees, including arrowweed, mesquite, cottonwood and willows. Some have advocated that by removing saltcedar, we could save water and create environments more favourable to these native species. To test these assumptions we compared sap flux measurements of water used by native species in contrast to saltcedar, and compared soil salinity, ground water depth and soil moisture across a gradient of 200-1500 m from the river's edge on a floodplain terrace at Cibola National Wildlife Refuge (CNWR). We found that the fraction of land covered (f(c)) with vegetation in 2005-2007 was similar to that occupied by native vegetation in 1938 using satellite-derived estimates and reprocessed aerial photographs scaled to comparable spatial resolutions (3-4 m). We converted f(c) to estimates of leaf area index (LAI) through point sampling and destructive analyses (r(2) = 0.82). Saltcedar LAI averaged 2.54 with an f(c) of 0.80, and reached a maximum of 3.7 with an f(c) of 0.95. The ranges in f(c) and LAI are similar to those reported for native vegetation elsewhere and from the 1938 photographs over the study site. On-site measurements of water use and soil and aquifer properties confirmed that although saltcedar grows in areas where salinity has increased much better than native shrubs and trees, rates of transpiration are similar. Annual water use over CNWR was about 1.15 m, year(-1). Copyright (C) 2008 John Wiley & Sons, Ltd.

DOI:
10.1002/eco.35

ISSN:
1936-0584

NASA Home Page Goddard Space Flight Center Home Page