Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Perez, JC, Cerdena, A, Gonzalez, A, Armas, M (2009). Nighttime cloud properties retrieval using MODIS and artificial neural networks. ADVANCES IN SPACE RESEARCH, 43(5), 852-858.

In this work a methodology for inferring water cloud macro and microphysical properties from nighttime MODIS imagery is developed. This method is based on the inversion of a theoretical radiative transfer model that simulates the radiances detected in each of the sensor infrared bands. To accomplish this inversion, an operational technique based on Artificial Neural Networks (ANNs) is proposed, whose main characteristic is the ability to retrieve cloud properties much faster than conventional methods. Furthermore, a detailed study of input data is performed to avoid different sources of errors that appear in several MODIS infrared channels. Finally, results of applying the proposed method are compared with in-situ measurements carried out during the DYCOMS-II field experiment. (C) 2008 COSPAR. Published by Elsevier Ltd. All rights reserved.



NASA Home Page Goddard Space Flight Center Home Page