Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Franz, BA, Kwiatkowska, EJ, Meister, G, McClain, CR (2008). Moderate Resolution Imaging Spectroradiometer on Terra: limitations for ocean color applications. JOURNAL OF APPLIED REMOTE SENSING, 2, 23525.

Abstract
The Moderate Resolution Imaging Spectroradiometer (MODIS) is currently flying on both the Terra and Aqua satellite platforms. The Ocean Biology Processing Group (OBPG) at NASA Goddard Space Flight Center is producing operational ocean color products from the MODIS-Aqua sensor; however, documented uncertainties and instabilities in the prelaunch and on-orbit characterization have inhibited the production of similar products from MODIS-Terra. In particular, the radiometric response of the 412-nm band has degraded by more than 40% over the 7-year mission lifespan, with similar though less extreme changes in the longer wavelengths. While such variability may be fully correctable through the on-board calibration system, it suggests that the optical properties of the scan mirror have changed significantly since launch. Furthermore, the degradation trends are substantially different between the two mirror sides, which is likely a result of asymmetric damage done to the mirror during prelaunch testing. These effects contribute to uncertainty in our knowledge of instrument response versus incidence angle on the mirror and sensitivity with respect to polarization of the observed radiance. In this paper, we examine the impact of apparent MODIS-Terra instrument characterization errors on the derived ocean color products and show that residual errors in the current operational calibration give rise to significant cross-scan artifacts, mirror-side differences, and detector-to-detector striping in the retrieved water-leaving radiances. In addition, we describe OBPG efforts to reduce these artifacts through statistical and vicarious instrument characterization, and show the quality of the resulting water-leaving radiance retrievals relative to those derived from MODIS-Aqua.

DOI:
10.1117/1.2957964

ISSN:
1931-3195

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page