Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Julien, Y, Sobrino, JA (2009). The Yearly Land Cover Dynamics (YLCD) method: An analysis of global vegetation from NDVI and LST parameters. REMOTE SENSING OF ENVIRONMENT, 113(2), 329-334.

NDVI (Normalized Difference Vegetation Index) has been widely used to monitor vegetation changes since the early eighties. On the other hand, little use has been made of land surface temperatures (LST), due to their sensitivity to the orbital drift which affects the NOAA (National Oceanic and Atmospheric Administration) platforms flying AVHRR sensor. This study presents a new method for monitoring vegetation by using NDVI and LST data, based on an orbital drift corrected dataset derived from data provided by the GIMMS (Global Inventory Modeling and Mapping Studies) group. This method, named Yearly Land Cover Dynamics (YLCD), characterizes NDVI and LST behavior on a yearly basis, through the retrieval of 3 parameters obtained by linear regression between NDVI and normalized LST data. These 3 parameters are the angle between regression line and abscissa axis, the extent of the data projected on the regression line, and the regression coefficient. Such parameters characterize respectively the vegetation type, the annual vegetation cycle length and the difference between real vegetation and ideal cases. Worldwide repartition of these three parameters is shown, and a map integrating these 3 parameters is presented. This map differentiates vegetation in function of climatic constraints, and shows that the presented method has good potential for vegetation monitoring, under the condition of a good filtering of the outliers in the data. (C) 2008 Elsevier Inc. All rights reserved.



NASA Home Page Goddard Space Flight Center Home Page