Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Chen, Y, Li, QB, Kahn, RA, Randerson, JT, Diner, DJ (2009). Quantifying aerosol direct radiative effect with Multiangle Imaging Spectroradiometer observations: Top-of-atmosphere albedo change by aerosols based on land surface types. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 114, D02109.

Abstract
Using internally consistent albedo, aerosol, cloud, and surface data from the Multiangle Imaging Spectroradiometer (MISR) instrument onboard the Terra satellite, top-of-atmosphere (TOA) spectral albedo change (d alpha) in the presence of aerosols over land is estimated and its dependence on aerosol and surface properties is analyzed. Linear regressions between spectral TOA albedo and aerosol optical depth (AOD) for different surface types are examined to derive the aerosol-free TOA albedo. MISR surface BiHemispherical Reflectance (BHR) values are used to differentiate surface types. We find relatively high correlations between spectral TOA albedo and AOD for BHR-stratified data in 2 degrees x 2 degrees grid cells. The global mean values of cloud-free d alpha over land for June - September 2007 are estimated to be 0.018 +/- 0.003 (blue), 0.010 +/- 0.003 (green), 0.007 +/- 0.003 (red), and 0.008 +/- 0.006 (near-infrared). Individual regions show large variations from these values. Global patterns of d alpha are determined mainly by AOD and aerosol radiative efficiency. Large positive values of d alpha are observed over regions with high aerosol loading and large single-scattering albedo, where the aerosol scattering effect is dominant. The presence of light-absorbing aerosols reduces aerosol radiative efficiency and d alpha. Surface reflectance influences both aerosol scattering and absorbing effects. Generally, the aerosol radiative efficiency decreases with increasing BHR. We also examined d alpha-AOD correlations over different vegetation types. We find the smallest d alpha values are over needleleaf forests and shrublands, whereas the largest values are over cropland and barren regions. The aerosol radiative efficiencies are lowest over needleleaf forests and barren regions and highest over grasslands and croplands.

DOI:
10.1029/2008JD010754

ISSN:
0148-0227

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page