Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Hird, JN, McDermid, GJ (2009). Noise reduction of NDVI time series: An empirical comparison of selected techniques. REMOTE SENSING OF ENVIRONMENT, 113(1), 248-258.

Satellite-derived NDVI time series are fundamental to the remote sensing of vegetation phenology, but their application is hindered by prevalent noise resulting chiefly from varying atmospheric conditions and sunsensor-surface viewing geometries. A model-based empirical comparison of six selected NDVI time series noise-reduction techniques revealed the general superiority of the double logistic and asymmetric Gaussian function-fitting methods over four alternative filtering techniques. However, further analysis demonstrated the strong influence of noise level, strength, and bias, and the extraction of phenological variables on technique performance. Users are strongly cautioned to consider both their ultimate objectives and the nature of the noise present in an NDVI data set when selecting an approach to noise reduction, particularly when deriving phenological variables. (C) 2008 Elsevier Inc. All rights reserved.



NASA Home Page Goddard Space Flight Center Home Page