Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Moody, EG, King, MD, Schaaf, CB, Platnick, S (2008). MODIS-Derived Spatially Complete Surface Albedo Products: Spatial and Temporal Pixel Distribution and Zonal Averages. JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 47(11), 2879-2894.

Abstract
Five years (2000-04) of spatially complete snow-free land surface albedo data have been produced using high-quality-flagged diffuse bihemispherical (white sky) and direct-beam directional hemispherical (black sky) land surface albedo data derived from observations taken by the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument aboard the NASA Terra satellite platform (MOD43B3, collection 4). In addition, a spatially complete snow-free aggregate albedo climatological product was generated. These spatially complete products were prepared using an ecosystem-dependent temporal interpolation technique that retrieves missing data within 3%-8% error. These datasets have already been integrated into research and operational projects that require snow-free land surface albedo. As such, this paper provides details regarding the spatial and temporal distribution of the filled versus the original MOD43B3 data. The paper also explores the intra- and interannual variation in the 5-yr data record and provides a qualitative comparison of zonal averages and annual cycles of the filled versus the original MOD43B3 data. The analyses emphasize the data's inter- and intraannual variation and show that the filled data exhibit large- and small-scale phenological behavior that is qualitatively similar to that of the original MOD43B3. These analyses thereby serve to showcase the inherent spectral, spatial, and temporal variability in the MOD43B3 data as well as the ability of the fill technique to preserve these unique regional and pixel-level phenological characteristics.

DOI:
10.1175/2008JAMC1795.1

ISSN:
1558-8424

NASA Home Page Goddard Space Flight Center Home Page