Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Thayn, JB, Price, KP (2008). Julian dates and introduced temporal error in remote sensing vegetation phenology studies. INTERNATIONAL JOURNAL OF REMOTE SENSING, 29(20), 6045-6049.

Remote-sensing-based vegetation phenology studies are commonly used to study agriculture, forestry, species distributions, and the effect of climate change on vegetation. These studies utilize annual time series of NDVI data to characterize seasonal growth patterns. The NDVI data for most of these studies have been pre-processed using a maximum value compositing process to minimize contamination from clouds. A side effect of this process is a degradation of temporal data, since NDVI values are assigned to multiday periods rather than the specific date of image capture. In this study, the compositing process is examined to determine if there is a reliable pattern to pixel selection. Also, the magnitude of the introduced error is estimated by comparing vegetation phenology metrics calculated using the temporally degraded data and metrics calculated using the actual date of each pixel. The root mean square errors between these datasets ranged from 9.4 to 10.9 days, much larger than is acceptable for most phenology studies. We conclude that vegetation phenology studies must make use of accurate temporal data to characterize changes in vegetation seasonality.



NASA Home Page Goddard Space Flight Center Home Page