Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Su, HB, Wood, EF, Wang, H, Pinker, RT (2008). Spatial and temporal scaling behavior of surface shortwave downward radiation based on MODIS and in situ measurements. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 5(3), 542-546.

Abstract
In this letter, a new Moderate Resolution Imaging Spectroradiometer (MODIS)-based 5-km surface shortwave downward (SWD) radiation data set is used to examine the spatial scaling behavior of the surface radiative fluxes. In situ measurements of SWD radiation at time scales from 5 to 55 min from the Oklahoma MesoNet and the Baseline Surface Radiation Network sites over the U.S. are employed to examine the temporal scaling behavior of surface downward radiation and to evaluate the estimates based on MODIS observations from both Terra and Aqua platforms. Analysis reveals that the surface SWD radiation derived from MODIS Terra is in better agreement with ground observations than those from MODIS Aqua. Spatial scaling behavior is investigated based on the MODIS-derived SWD radiation at scales varying from 5 to 100 km. The root mean square difference and the mean standard deviation are found to be highly correlated with the scale exhibiting a strong log-linear relationship. This is a first study on the scaling behavior for surface SWD. Such information is expected to provide linkage between different satellite-based radiation data sets including those derived from geostationary satellites usually of coarser spatial resolutions.

DOI:
10.1109/LGRS.2008.923209

ISSN:
1545-598X

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page