Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

McMillan, AMS, Goulden, ML (2008). Age-dependent variation in the biophysical properties of boreal forests. GLOBAL BIOGEOCHEMICAL CYCLES, 22(2), GB2019.

Abstract
The changes in boreal forest hydrology, biogeochemistry, and biophysics during succession have critical implications for the sign and magnitude of the vegetation-climate feedbacks that might occur with a change in fire frequency, and also for the identification and attribution of changes in boreal forest to climate. We combined in situ measurements from eddy covariance sites located along an age transect in a Canadian boreal forest with spectral vegetation indices ( SVIs) derived from Landsat and MODIS imagery. We found tight spatial relationships between Landsat SVIs and in situ measurements of three important biophysical properties: albedo, maximum daily uptake of CO2 (FCO2-max), and leaf area index ( LAI). The tasseled cap indices were particularly well suited for tracking biophysical variation along an age transect. Trends in brightness, greenness, and wetness from 1984 to 2005 indicated how succession drives temporal trends in biophysical properties. Albedo and FCO2-max increased rapidly in the decade following fire and then decreased for the remainder of succession, while LAI continued to increase until similar to 135 years and may decrease thereafter. The ratio of greenness to wetness indicated that photosynthesis was limited by leaf area before 10-12 years and by reduced leaf-level photosynthetic rates thereafter, coinciding with the successional replacement of broadleaf deciduous species by evergreen conifer species. The timing of phenological events was also strongly age-dependent, but the normalized difference vegetation index (NDVI) confounded the disappearance of the snowpack in spring for the onset of photosynthesis. Secondary succession was the dominant source of temporal variability in the biophysical properties we examined.

DOI:
10.1029/2007GB003038

ISSN:
0886-6236

NASA Home Page Goddard Space Flight Center Home Page