Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Lovejoy, S, Tarquis, AM, Gaonac'h, H, Schertzer, D (2008). "Single- and multiscale remote sensing techniques, multifractals, and MODIS-derived vegetation and soil moisture". VADOSE ZONE JOURNAL, 7(2), 533-546.

Abstract
Scaling processes are increasingly understood to be the result of nonlinear dynamic mechanisms repeating scale after scale from large to small scales leading to nonclassical resolution dependencies. This means that the statistical properties systematically vary in strong, power-law ways with the resolution. When present in geophysical and remotely sensed fields, it implies that when classical (single-scale) remote sensing algorithms are used to determine surrogates of various geophysical fields, they can at most be correct at the unique (and subjective) calibration resolution. Scaling analysis and modeling techniques were applied to MODIS TERRA Bands I through 7 and to the standard derived vegetation and soil moisture indices in order to quantitatively characterize the wide range of scaling of these fields, The scaling exponents we found are not so large; however, they act across wide scale ranges and imply large effects. For example, for the statistics near the mean, the MODIS (500-m) resolution would be biased by a factor of similar to 1.52 when compared with similar results from an ideal sensor at 1-mm resolution. Applying the standard index algorithms on lower and lower resolution satellite data, we obtained indices with significantly different statistical properties than if the same algorithm was used at the finest resolution and then degraded to an intermediate value (a difference of a factor similar to 1.54). This shows that the algorithms can, at best, be accurate at the unique calibration scale and this points to the need to develop resolution-independent algorithms based on the scaling exponents.

DOI:
10.2136/vzj2007.0173

ISSN:
1539-1663

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page