Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Zhang, JL, Reid, JS, Westphal, DL, Baker, NL, Hyer, EJ (2008). A system for operational aerosol optical depth data assimilation over global oceans. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 113(D10), D10208.

Abstract
In this study, we present an aerosol data assimilation system destined for operational use at the Fleet Numerical Meteorological and Oceanographic Center (FNMOC). The system is an aerosol physics version of the Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System (NAVDAS) that is already operational. The purpose of this new system, NAVDAS-Aerosol Optical Depth (NAVDAS-AOD) is to improve the NRL Aerosol Analysis and Prediction System (NAAPS)'s forecasting capability by assimilating observational data sources with NAAPS forecast fields. This will allow for not only improved aerosol forecasting but also for dramatically enhanced global scale research capabilities for the study of aerosol-meteorology interaction. NAVDAS-AOD assimilates a newly developed over-water Moderate-Resolution Imaging Spectroradiometers (MODIS) level 3 aerosol product with NAAPS. This paper is the second in a series which describes NRL's program to realistically monitor global aerosol distributions. Here we explain the reasons and procedures for constructing the over-water level 3 MODIS aerosol product, describe the theoretical basis for NAVDAS-AOD, and provide a thorough statistical error analysis for both the MODIS observations and the NAAPS model background fields that are critical to aerosol data assimilation. Using 5 months of analysis, our study shows that by carefully screening over-water satellite observations to ensure only the best quality data are used in the aerosol assimilation process, the NAVDAS-AOD can significantly improve the NAAPS global aerosol optical depth analysis as well as improve the aerosol forecast skill.

DOI:
10.1029/2007JD009065

ISSN:
0148-0227

NASA Home Page Goddard Space Flight Center Home Page