Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Kosmopoulos, PG, Kaskaoutis, DG, Nastos, PT, Kambezidis, HD (2008). "Seasonal variation of columnar aerosol optical properties over Athens, Greece, based on MODIS data". REMOTE SENSING OF ENVIRONMENT, 112(5), 2354-2366.

Abstract
A long-term (2000-2005) data set of aerosol optical properties obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) is analyzed focusing on the Greater Athens Area in the Eastern Mediterranean region. The MODIS aerosol optical depth standard product (AOD at 550 nm) and its respective ratio attributed to fine-mode particles (FM) are employed to evaluate the inter-annual and seasonal variability of the aerosol properties over Athens. Based on AOD(550) and FM values three specific aerosol types are discriminated corresponding to different aerosol load and optical properties. The aerosol types considered correspond to urban/industrial aerosols, coarse-mode particles and clean maritime conditions. This study focuses on the seasonal and year-to-year fluctuation of the number of occurrences as well as the AOD(550) and FM values of each aerosol type. The coarse-mode particles are observed mainly in the summer, while spring is the most favorable season for the occurrence of urban/industrial aerosols. On the other hand, clean maritime conditions occur mainly in the winter. The AOD(550) values for the coarse-mode particles are higher in spring, while the urban/industrial and clean maritime aerosols exhibit slightly higher values in the summer. The seasonal distribution of the aerosol properties is related to anthropogenic and dust emissions in the spring/summer period, but is modified by atmospheric dispersion and precipitation in late autumn/winter. The main conclusion of the study is that the coarse-mode particles exhibit much stronger inter-annual and seasonal variability compared to the urban/industrial aerosols. Finally, three cases corresponding to each aerosol type are analyzed with the aid of synoptic weather maps, air mass trajectories and MODIS data. (C) 2007 Elsevier Inc. All rights reserved.

DOI:
10.1016/j.rse.2007.11.006

ISSN:
0034-4257

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page