Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Renzullo, LJ, Barrett, DJ, Marks, AS, Hill, MJ, Guerschman, JP, Mu, QZ, Running, SW (2008). Multi-sensor model-data fusion for estimation of hydrologic and energy flux parameters. REMOTE SENSING OF ENVIRONMENT, 112(4), 1306-1319.

Abstract
Model-data fusion offers considerable promise in remote sensing for improved state and parameter estimation particularly when applied to multi-sensor image products. This paper demonstrates the application of a 'multiple constraints' model-data fusion (MCMDF) scheme to integrating AMSR-E soil moisture content (SMC) and MODIS land surface temperature (LST) data products with a coupled biophysical model of surface moisture and energy budgets for savannas of northern Australia. The focus in this paper is on the methods, difficulties and error sources encountered in developing an MCMDF scheme and enhancements for future schemes. An important aspect of the MCMDF approach emphasized here is the identification of inconsistencies between model and data, and among data sets. The MCMDF scheme was able to identify that an inconsistency existed between AMSR-E SMC and LST data when combined with the coupled SEB-MRT model. For the example presented, an optimal fit to both remote sensing data sets together resulted in an 84% increase in predicted SMC and 0.06% increase for LST relative to the fit to each data set separately. Thai: is the model predicted on average cooler LST's (similar to 1.7 K) and wetter SMC values (similar to 0.04 g cm(-3)) than the satellite image products. In this instance we found that the AMSR-E SMC data on their own were poor constraints on the model. Incorporating LST data via the MCMDF scheme ameliorated deficiencies in the SMC data and resulted in enhanced characterization of the land surface soil moisture and energy balance based on comparison with the MODIS evapotranspiration (ET) product of Mu et al. [Mu, Q., Heinsch, F.A, Zhao, M. and Running, S.W. (in press), Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote Sensing of Environment.]. Canopy conductance, gc, and latent heat flux, lambda E, from the MODI S ET product were in good agreement with RMSEs for g(C)=0.5 mm s(-1) and for lambda E=18 W m(-2), respectively. Differences were attributable to a greater canopy-to-air vapor pressure gradient in the MCMDF approach obtained from a more realistic partitioning of soil surface and canopy temperatures. (C) 2007 Elsevier Inc. All rights reserved.

DOI:
10.1016/j.rse.2007.06.022

ISSN:
0034-4257

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page