Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Tian, GL, Xiao, DH, Cai, XW, Xing, YL, Wen, LL, Zheng, GG, Ji, ZR (2008). "An application of MODIS data to snow cover monitoring in a pastoral area: A case study in Northern Xinjiang, China". REMOTE SENSING OF ENVIRONMENT, 112(4), 1514-1526.

Abstract
Snow is an important land cover on the earth's surface. It is characterized by its changing nature. Monitoring snow cover extent plays a significant role in dynamic studies and prevention of snow-caused disasters in pastoral areas. Using NASA EOS Terra/MODIS snow cover products and in situ observation data during the four snow seasons from November 1 to March 31 of year 2001 to 2005 in northern Xinjiang area, the accuracy of MODIS snow cover mapping algorithm under varied snow depth and land cover types was analyzed. The overall accuracy of MODIS daily snow cover mapping algorithm in clear sky condition is high at 98.5%; snow agreement reaches 98.2%, and ranges from 77.8% to 100% over the 4-year period for individual sites. Snow depth (SD) is one of the major factors affecting the accuracy of MODIS snow cover maps. MODIS does not identify any snow for SD less than 0.5 cm. The overall accuracy increases with snow depth if SD is equal to or greater than 3 cm, and decreases for SD below 3 cm. Land cover has an important influence in the accuracy of MODIS snow cover maps. The use of MOD10A1 snow cover products is severely affected by cloud cover. The 8-day composite products of MOD10A2 can effectively minimize the effect of cloud cover in most cases. Cloud cover in excess of 10% occurs on 99% of the MOD10A1 products and 14.7% of the MOD10A2 products analyzed during the four snow seasons. User-defined multiple day composite images based on MOD10A1, with flexibilities of selecting composite period, starting and ending date and composite sequence of MOD10A1 products, have an advantage in effectively monitoring snow cover extent for regional snow-caused disasters in pastoral areas. (C) 2007 Published by Elsevier Inc.

DOI:
10.1016/j.rse.2007.06.001

ISSN:
0034-4257

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page