Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Roberts, GJ, Wooster, MJ (2008). Fire detection and fire characterization over Africa using Meteosat SEVIRI. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 46(4), 1200-1218.

Abstract
Africa is the single largest continental source of biomass burning emissions and one where emission source strengths are characterized by strong diurnal and seasonal cycles. This paper describes the development of a fire detection and characterization algorithm for generating high temporal resolution African pyrogenic emission data sets using data from the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI). The algorithm builds on a prototype approach tested previously with preoperational SEVIRI data and utilizes both spatial and spectral detection methods whose thresholds adapt contextually within and between imaging slots. Algorithm validation is carried out via comparison to data from similar to 800 temporally coincident Moderate Resolution Imaging Spectroradiometer (MODIS) scenes, and performance is significantly improved over the prior algorithm version. particularly in terms of detecting low fire radiative power (FRP) signals. On a per-fire basis, SEVIRI shows a good agreement with MODIS in terms of FRP measurement, with a small (3.7 MW) bias. In comparison to regional-scale total FRP derived from MODIS, SEVIRI underestimates this by, on average, 40% to 50% due to the nondetection of many low-intensity fire pixels (FRP < 50 MW). Frequency-magnitude analysis can be used to adjust fire radiative energy estimates for this effect, and taking this and other adjustments into account, SEVIRI-derived fuel consumption estimates for southern Africa from July to October 2004 are 259-339 Tg, with emission intensity peaking after midday and reducing by more than an order of magnitude each night.

DOI:
10.1109/TGRS.2008.915751

ISSN:
0196-2892

NASA Home Page Goddard Space Flight Center Home Page