Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Huang, CQ, Song, K, Kim, S, Townshend, JRG, Davis, P, Masek, JG, Goward, SN (2008). Use of a dark object concept and support vector machines to automate forest cover change analysis. REMOTE SENSING OF ENVIRONMENT, 112(3), 970-985.

Abstract
An automated method was developed for mapping forest cover change using satellite remote sensing data sets. This multi-temporal classification method consists of a training data automation (TDA) procedure and uses the advanced support vector machines (SVM) algorithm. The TDA procedure automatically generates training data using input satellite images and existing land cover products. The derived high quality training data allow the SVM to produce reliable forest cover change products. This approach was tested in 19 study areas selected from major forest biomes across the globe. In each area a forest cover change map was produced using a pair of Landsat images acquired around 1990 and 2000. High resolution IKONOS images and independently developed reference data sets were available for evaluating the derived change products in 7 of those areas. The overall accuracy values were over 90% for 5 areas, and were 89.4% and 89.6% for the remaining two areas. The user's and producer's accuracies of the forest loss class were over 80% for all 7 study areas, demonstrating that this method is especially effective for mapping major disturbances with low commission errors. IKONOS images were also available in the remaining 12 study areas but they were either located in non-forest areas or in forest areas that did not experience forest cover change between 1990 and 2000. For those areas the IKONOS images were used to assist visual interpretation of the Landsat images in assessing the derived change products. This visual assessment revealed that for most of those areas the derived change products likely were as reliable as those in the 7 areas where accuracy assessment was conducted. The results also suggest that images acquired during leaf-off seasons should not be used in forest cover change analysis in areas where deciduous forests exist. Being highly automatic and with demonstrated capability to produce reliable change products, the TDA-SVM method should be especially usefial for quantifying forest cover change over large areas. (C) 2007 Elsevier Inc. All rights reserved.

DOI:
10.1016/j.rse.2007.07.023

ISSN:
0034-4257

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page