Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Vourlitis, GL, Nogueira, JD, Lobo, FD, Sendall, KM, de Paulo, SR, Dias, CAA, Pinto, OB, de Andrade, NLR (2008). Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. WATER RESOURCES RESEARCH, 44(3), W03412.

Abstract
Deforestation and climate change have the capacity to alter rainfall regimes, water availability, and surface-atmosphere flux of water and energy of tropical forests, especially in ecotonal, semi-deciduous tropical forests of the southern Amazon Basin, which have experienced rapid regional warming and deforestation over the last three decades. To reduce uncertainty regarding current and future energy and water flux, micrometeorological measurements of latent (Q(e)) and sensible heat flux (Q(h)) and canopy conductance (G(c)) were combined with measurements of sap flux density (F-d) and maximum leaf conductance (g(smax)) to characterize the seasonal controls on mass (H2O) and energy exchange of an ecotonal, semi-deciduous forest in northern Mato Grosso, Brazil over the 2005-2006 annual cycle. Average diel patterns and daily rates of energy flux and conductance declined during the dry season; however, the decline in Fd and Qe was smaller and/or more gradual than Gc and gsmax. Weekly averages of transpiration calculated from sap flow measurements during the dry-wet season transition period were positively correlated (r(2) = 0.47; p < 0.05; n = 11) with estimates of leaf area index (LAI) derived from the Modis-Aqua satellite platform while estimates of evapotranspiration ET derived from eddy covariance were not, presumably because these estimates also include an evaporation component. Overall, our results suggest that access to deep water reserves can support high rates of Fd and Qe during the dry season, but because of high evaporative demand, declines in plant water potential lead to a corresponding decline in Gc. Furthermore, seasonal variations in LAI, that are likely to be controlled in part by plant water status and phenology, constrain tree and stand transpiration. Thus the consistency of Qe over the annual cycle appears to be the result of trade-offs between water availability (rainfall, soil moisture, water potential), canopy structural properties (LAI), and meteorological conditions including vapor pressure deficit and net radiation.

DOI:
10.1029/2006WR005526

ISSN:
0043-1397

NASA Home Page Goddard Space Flight Center Home Page