Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

McGowan, HA, Clark, A (2008). "A vertical profile of PM10 dust concentrations measured during a regional dust event identified by MODIS Terra, western Queensland, Australia". JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 113(F2), F02S03.

Abstract
Accurate determination of the spatiotemporal properties of dust plumes and their dust concentrations is essential for calibration of satellite products and the initialization and validation of numerical models that simulate the physical properties and affects of dust events. In this paper, we present a 500 m vertical profile of PM10 dust concentrations measured during a regional dust event in western Queensland, Australia. PM10 dust concentrations within the haze were found to be > 20 times background ambient values and decreased with height following an exponential function. We apply an over-land algorithm to MODIS Terra satellite images of the dust haze to enhance its visual appearance against the bright land surface and define its size. In conjunction with the measured attenuation of dust concentrations with height we calculate the PM10 dust load of the plume to be similar to 60% of that which would have been calculated assuming a constant dust concentration up to the dust ceiling height. Results extend previous findings from tower-based studies made close to the surface and confirm that atmospheric dust concentrations decrease rapidly with increasing height, thereby enabling more accurate calculation of atmospheric dust loads during synoptic-scale dust outbreaks.

DOI:
10.1029/2007JF000765

ISSN:
0148-0227

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page