Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Houborg, R, Boegh, E (2008). Mapping leaf chlorophyll and leaf area index using inverse and forward canopy reflectance modeling and SPOT reflectance data. REMOTE SENSING OF ENVIRONMENT, 112(1), 186-202.

Abstract
Reflectance data in the green, red and near-infrared wavelength region were acquired by the SPOT high resolution visible and geometric imaging instruments for an agricultural area in Denmark (56 degrees N, 9 degrees E) for the purpose of estimating leaf chlorophyll content (C-ab) and green leaf area index (LAI). SPOT reflectance observations were atmospherically corrected using aerosol data from MODIS and profiles of air temperature, humidity and ozone from the Atmospheric Infrared Sounder (AIRS), and used as input for the inversion of a canopy reflectance model. Computationally efficient inversion schemes were developed for the retrieval of soil and land cover-specific parameters which were used to build multiple species and site dependent formulations relating the two biophysical properties of interest to vegetation indices or single spectral band reflectances. Subsequently, the family of model generated relationships, each a function of soil background and canopy characteristics, was employed for a fast pixel-wise mapping of C-ab and LAI. The biophysical parameter retrieval scheme is completely automated and image-based and solves for the soil background reflectance signal, leaf mesophyll structure, specific dry matter content, Markov clumping characteristics, C-ab and LAI without utilizing calibration measurements. Despite the high vulnerability of near-infrared reflectances (rho(nir)) to variations in background properties, an efficient correction for background influences and a strong sensitivity of rho(nir) to LAI, caused LAI-rho(nir) relationships to be very useful and preferable over LAI-NDVI relationships for LAI prediction when LAI>2. Reflectances in the green waveband (rho(green)) were chosen for producing maps of C-ab. The application of LAI-NDVI, LAI-rho(nir) and C-ab-rho(green) relationships provided reliable quantitative estimates of C-ab and LAI for agricultural crops characterized by contrasting architectures and leaf biochemical constituents with overall root mean square deviations between estimates and in-situ measurements of 0.74 for LAI and 5.0 mu g cm(-2) for C-ab. The results of this study illustrate the non-uniqueness of spectral reflectance relationships and the potential of physically-based inverse and forward canopy reflectance modeling techniques for a reasonably fast and accurate retrieval of key biophysical parameters at regional scales. (C) 2007 Elsevier Inc. All rights reserved.

DOI:
10.1016/j.rse.2007.04.012

ISSN:
0034-4257

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page