Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Freeborn, PH, Wooster, MJ, Hao, WM, Ryan, CA, Nordgren, BL, Baker, SP, Ichoku, C (2008). "Relationships between energy release, fuel mass loss, and trace gas and aerosol emissions during laboratory biomass fires". JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 113(D1), D01301.

Forty-four small-scale experimental fires were conducted in a combustion chamber to examine the relationship between biomass consumption, smoke production, convective energy release, and middle infrared (MIR) measurements of fire radiative energy (FRE). Fuel bed weights, trace gas and aerosol particle concentrations, stack flow rate and temperature, and concurrent thermal images were collected during laboratory-controlled burns of vegetative fuels. Using two different MIR thermal imaging systems, measurements of FRE taken at polar angles of. angle 48 degrees and angle 60 degrees were found not to be significantly different from each other (p < 0.05), but were significantly different from those obtained at. angle 76 degrees. A simple linear regression revealed that less than 12% of the variation in biomass consumption remained unexplained by the measured FRE regardless of MIR sensor characteristics, fuel type, or viewing angle. Measurements of FRE detected per unit of dry organic material consumed ranged from 1.29 to 4.18 MJ/ kg, corresponding to an average of 12 +/- 3% of the higher heating value of the biomass. Whole-fire emission factors agreed with previously reported values, and emission ratios relating total mass production to FRE were determined for CO2, CO, NO, NO2, and particulate matter less than 2.5 mu m in aerodynamic diameter. A heat balance performed on the system showed that the release of convective energy could be predicted from a measurement of FRE (r(2) >= 0.84), and together these two modes of heat transfer accounted for 61 +/- 13% of the total, potential heat of combustion available in the preburn solid fuel.



NASA Home Page Goddard Space Flight Center Home Page