Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Berberoglu, S, Evrendilek, F, Ozkan, C, Donmez, C (2007). Modeling forest productivity using envisat MERIS data. SENSORS, 7(10), 2115-2127.

Abstract
The aim of this study was to derive land cover products with a 300-m pixel resolution of Envisat MERIS (Medium Resolution Imaging Spectrometer) to quantify net primary productivity (NPP) of conifer forests of Taurus Mountain range along the Eastern Mediterranean coast of Turkey. The Carnegie-Ames-Stanford approach (CASA) was used to predict annual and monthly regional NPP as modified by temperature, precipitation, solar radiation, soil texture, fractional tree cover, land cover type, and normalized difference vegetation index (NDVI). Fractional tree cover was estimated using continuous training data and multi-temporal metrics of 47 Envisat MERIS images of March 2003 to September 2005 and was derived by aggregating tree cover estimates made from highresolution IKONOS imagery to coarser Landsat ETM imagery. A regression tree algorithm was used to estimate response variables of fractional tree cover based on the multi-temporal metrics. This study showed that Envisat MERIS data yield a greater spatial detail in the quantification of NPP over a topographically complex terrain at the regional scale than those used at the global scale such as AVHRR.

DOI:

ISSN:
1424-8220

NASA Home Page Goddard Space Flight Center Home Page