Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Pisek, J, Chen, JM, Deng, F (2007). Assessment of a global leaf area index product from SPOT-4 VEGETATION data over selected sites in Canada. CANADIAN JOURNAL OF REMOTE SENSING, 33(4), 341-356.

Abstract
Leaf area index (LAI) is a fundamental land surface parameter for various earth science applications. A new set of recently developed LAI algorithms has been employed for producing a global LAI dataset at 1 km resolution and in time steps of 10 days, using the Satellite pour l'observation de la terre (SPOT) VEGETATION sensor data. This paper presents the results of a regional validation of the new product at seven reference sites in Canada. Differences in land cover classifications and quality of the input sensor data were identified as the largest sources of scene-wide bias errors; the aggregation of the images from 1 km to 4 km resolution led to a reduction of errors in the order of 12%. Systematic errors were observed over mountainous areas where terrain shading, clumping, and bidirectional reflectance distribution function (BRDF) normalization are problematic. Overall, the new global LAI dataset was found to be reasonably accurate and proved to have the potential to become a sound alternative to the global moderate-resolution imaging spectroradiometer (MODIS) LAI product.

DOI:

ISSN:
0703-8992

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page